文章根据移动应用需求,推导三维空间最小二乘(least square,LS)算法、Taylor级数展开法和查恩(Chan)算法3种经典到达时间差(time difference of arrival,TDOA)算法求解过程,通过仿真模拟分析3种算法的不同特点,确定移动定位场景下的最...文章根据移动应用需求,推导三维空间最小二乘(least square,LS)算法、Taylor级数展开法和查恩(Chan)算法3种经典到达时间差(time difference of arrival,TDOA)算法求解过程,通过仿真模拟分析3种算法的不同特点,确定移动定位场景下的最佳算法。为了进一步提高定位精度,采用Kalman滤波中递推估计思想,减小噪声干扰产生的误差,提升到达时间(time of arrival,TOA)测距精度,进而获得三维空间中性能优良的TDOA算法。测试试验表明,改进后的Chan算法有效且性能优良,定位误差最大为10~30cm。展开更多
A HF receiver for data transmission based on Kalman filter and channelestimator is proposed.The simulation results show that the performance of the proposedscheme is about 2 dB better than that of Decision-Feedback Eq...A HF receiver for data transmission based on Kalman filter and channelestimator is proposed.The simulation results show that the performance of the proposedscheme is about 2 dB better than that of Decision-Feedback Equalizer based onSquare-Root Kalman Algorithm(SRKA/DFE)and its computational complexity islower than that of Maximum Likelihood Sequence Estimation(MLSE).展开更多
文摘文章根据移动应用需求,推导三维空间最小二乘(least square,LS)算法、Taylor级数展开法和查恩(Chan)算法3种经典到达时间差(time difference of arrival,TDOA)算法求解过程,通过仿真模拟分析3种算法的不同特点,确定移动定位场景下的最佳算法。为了进一步提高定位精度,采用Kalman滤波中递推估计思想,减小噪声干扰产生的误差,提升到达时间(time of arrival,TOA)测距精度,进而获得三维空间中性能优良的TDOA算法。测试试验表明,改进后的Chan算法有效且性能优良,定位误差最大为10~30cm。
文摘A HF receiver for data transmission based on Kalman filter and channelestimator is proposed.The simulation results show that the performance of the proposedscheme is about 2 dB better than that of Decision-Feedback Equalizer based onSquare-Root Kalman Algorithm(SRKA/DFE)and its computational complexity islower than that of Maximum Likelihood Sequence Estimation(MLSE).