文献检索时通常会用到LSI(Latent Semantic Indexing)算法。针对算法中返回值受阈值大小影响的问题,对算法中由奇异值分解SVD(Singular Value Decomposition)得到的左、右奇异值矩阵,用k-means算法对其进行聚类,提出了LSI改进算法。实...文献检索时通常会用到LSI(Latent Semantic Indexing)算法。针对算法中返回值受阈值大小影响的问题,对算法中由奇异值分解SVD(Singular Value Decomposition)得到的左、右奇异值矩阵,用k-means算法对其进行聚类,提出了LSI改进算法。实验结果表明,与传统的LSI方法相比,改进算法在提供k-means算法分类的维度时获得了更好的性能,证明了算法的有效性。展开更多
文摘文献检索时通常会用到LSI(Latent Semantic Indexing)算法。针对算法中返回值受阈值大小影响的问题,对算法中由奇异值分解SVD(Singular Value Decomposition)得到的左、右奇异值矩阵,用k-means算法对其进行聚类,提出了LSI改进算法。实验结果表明,与传统的LSI方法相比,改进算法在提供k-means算法分类的维度时获得了更好的性能,证明了算法的有效性。