The e-N method is widely used in transition prediction. The amplitude growth rate used in the e-N method is usually provided by the linear stability theory (LST) based on the local parallel hypothesis. Considering t...The e-N method is widely used in transition prediction. The amplitude growth rate used in the e-N method is usually provided by the linear stability theory (LST) based on the local parallel hypothesis. Considering the non-parallelism effect, the parabolized stability equation (PSE) method lacks local characteristic of stability analysis. In this paper, a local stability analysis method considering non-parallelism is proposed, termed as EPSE since it may be considered as an expansion of the PSE method. The EPSE considers variation of the shape function in the streamwise direction. Its local characteristic is convenient for stability analysis. This paper uses the EPSE in a strong non-parallel flow and mode exchange problem. The results agree well with the PSE and the direct numerical simulation (DNS). In addition, it is found that the growth rate is related to the normalized method in the non-parallel flow. Different results can be obtained using different normalized methods. Therefore, the normalized method must be consistent.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11332007,11172203,and 91216111)
文摘The e-N method is widely used in transition prediction. The amplitude growth rate used in the e-N method is usually provided by the linear stability theory (LST) based on the local parallel hypothesis. Considering the non-parallelism effect, the parabolized stability equation (PSE) method lacks local characteristic of stability analysis. In this paper, a local stability analysis method considering non-parallelism is proposed, termed as EPSE since it may be considered as an expansion of the PSE method. The EPSE considers variation of the shape function in the streamwise direction. Its local characteristic is convenient for stability analysis. This paper uses the EPSE in a strong non-parallel flow and mode exchange problem. The results agree well with the PSE and the direct numerical simulation (DNS). In addition, it is found that the growth rate is related to the normalized method in the non-parallel flow. Different results can be obtained using different normalized methods. Therefore, the normalized method must be consistent.
文摘基于Landsat TM影像中的热红外数据,利用单窗算法和单通道算法对延吉市的地表温度进行了反演,并对反演结果进行了统计.结果表明:2种反演算法所反演出来的地表温度总体趋势比较一致,其中单通道算法所反演出来的温度比单窗算法高一些,平均相差约1.03 K;2种算法的结果与亮度温度相比,单窗算法和单通道算法分别高出约3.32 K和4.35 K.