依据最小二乘支持向量机(LS_SVM)的基本理论,针对蓄电池荷电状态(state of charge,SOC)随温度、电压、电流而变化的特点,建立基于LS-SVM支持向量机的蓄电池SOC估测模型。通过数据验证,比较不同核函数下的效果,利用网格搜索寻找最优参数...依据最小二乘支持向量机(LS_SVM)的基本理论,针对蓄电池荷电状态(state of charge,SOC)随温度、电压、电流而变化的特点,建立基于LS-SVM支持向量机的蓄电池SOC估测模型。通过数据验证,比较不同核函数下的效果,利用网格搜索寻找最优参数。观察在最优参数和最优核函数下LS_SVM支持向量机的预测效果。结果表明,与其他算法相比,采用RBF核函数,并用网格搜索优化的LS_SVM模型精度较高,适合用在蓄电池的SOC估测上。展开更多
压缩硬度和汁液含量是衡量苹果内部品质的两项重要指标。采用高光谱散射图像技术对苹果压缩硬度和汁液含量进行预测。已有研究表明,高光谱图像含有丰富的波谱信息,光谱值与测量值之间存在严重的非线性关系,简单的线性建模方法不能达到...压缩硬度和汁液含量是衡量苹果内部品质的两项重要指标。采用高光谱散射图像技术对苹果压缩硬度和汁液含量进行预测。已有研究表明,高光谱图像含有丰富的波谱信息,光谱值与测量值之间存在严重的非线性关系,简单的线性建模方法不能达到较高的预测精度。最小二乘支持向量机(Least Squares Support Vector Machine,LS_SVM)作为一种非线性建模工具,已用于解决小样本、非线性和高维数等实际问题。针对580个‘RedDelicious’苹果的高光谱散射图像,提取600~1000nm范围内的波谱信息,采用LS_SVM建立苹果的压缩硬度和汁液含量模型。研究结果表明,LS_SVM压缩硬度预测模型的相关系数为Rp=0.795,预测均方差为RMSEP=10.4KN/m,汁液含量的相关系数为Rp=0.568,预测均方差为RMSEP=1.20cm2,高于传统的偏微分最小二乘(PartialLeastSquares,PLS)建立的压缩硬度,模型精度Rp=0.744,RMSEP=11.4KN/m,汁液含量模型精度Rp=0.539,RMSEP=1.23cm2。展开更多
文摘依据最小二乘支持向量机(LS_SVM)的基本理论,针对蓄电池荷电状态(state of charge,SOC)随温度、电压、电流而变化的特点,建立基于LS-SVM支持向量机的蓄电池SOC估测模型。通过数据验证,比较不同核函数下的效果,利用网格搜索寻找最优参数。观察在最优参数和最优核函数下LS_SVM支持向量机的预测效果。结果表明,与其他算法相比,采用RBF核函数,并用网格搜索优化的LS_SVM模型精度较高,适合用在蓄电池的SOC估测上。
文摘压缩硬度和汁液含量是衡量苹果内部品质的两项重要指标。采用高光谱散射图像技术对苹果压缩硬度和汁液含量进行预测。已有研究表明,高光谱图像含有丰富的波谱信息,光谱值与测量值之间存在严重的非线性关系,简单的线性建模方法不能达到较高的预测精度。最小二乘支持向量机(Least Squares Support Vector Machine,LS_SVM)作为一种非线性建模工具,已用于解决小样本、非线性和高维数等实际问题。针对580个‘RedDelicious’苹果的高光谱散射图像,提取600~1000nm范围内的波谱信息,采用LS_SVM建立苹果的压缩硬度和汁液含量模型。研究结果表明,LS_SVM压缩硬度预测模型的相关系数为Rp=0.795,预测均方差为RMSEP=10.4KN/m,汁液含量的相关系数为Rp=0.568,预测均方差为RMSEP=1.20cm2,高于传统的偏微分最小二乘(PartialLeastSquares,PLS)建立的压缩硬度,模型精度Rp=0.744,RMSEP=11.4KN/m,汁液含量模型精度Rp=0.539,RMSEP=1.23cm2。