To explain the recent three-year La Niña event from 2020 to 2022,which has caused catastrophic weather events worldwide,Fasullo et al.(2023)demonstrated that the increase in biomass aerosol resulting from the 201...To explain the recent three-year La Niña event from 2020 to 2022,which has caused catastrophic weather events worldwide,Fasullo et al.(2023)demonstrated that the increase in biomass aerosol resulting from the 2019-20 Australian wildfire season could have triggered this multi-year La Niña.Here,we present compelling evidence from paleo-proxies,utilizing a substantial sample size of 26 volcanic eruptions in the Southern Hemisphere(SH),to support the hypothesis that ocean cooling in the SH can lead to a multi-year La Niña event.This research highlights the importance of focusing on the Southern Ocean,as current climate models struggle to accurately simulate the Pacific response driven by the Southern Ocean.展开更多
Based on the updates of the Climate Prediction Center and International Research Institute for Climate and Society(CPC/IRI)and the China Multi-Model Ensemble(CMME)El Niño-Southern Oscillation(ENSO)Outlook issued ...Based on the updates of the Climate Prediction Center and International Research Institute for Climate and Society(CPC/IRI)and the China Multi-Model Ensemble(CMME)El Niño-Southern Oscillation(ENSO)Outlook issued in April 2022,La Niña is favored to continue through the boreal summer and fall,indicating a high possibility of a three-year La Niña(2020-23).It would be the first three-year La Niña since the 1998-2001 event,which is the only observed three-year La Niña event since 1980.By examining the status of air-sea fields over the tropical Pacific in March 2022,it can be seen that while the thermocline depths were near average,the southeasterly wind stress was at its strongest since 1980.Here,based on a quaternary linear regression model that includes various relevant air-sea variables over the equatorial Pacific in March,we argue that the historic southeasterly winds over the equatorial Pacific are favorable for the emergence of the third-year La Niña,and both the anomalous easterly and southerly wind stress components are important and contribute~50%of the third-year La Niña growth,respectively.Additionally,the possible global climate impacts of this event are discussed.展开更多
利用1951—2010年逐月的HadISST海表温度资料、SODA次表层海温资料和NCEP/NCAR再分析资料等,对比分析了东太平洋(EP型)La Nia和中太平洋(CP型)La Nia的海气耦合特征在季节演变过程中的差异。EP La Nia海表温度异常中心在发展年夏...利用1951—2010年逐月的HadISST海表温度资料、SODA次表层海温资料和NCEP/NCAR再分析资料等,对比分析了东太平洋(EP型)La Nia和中太平洋(CP型)La Nia的海气耦合特征在季节演变过程中的差异。EP La Nia海表温度异常中心在发展年夏季出现于南美沿岸,随后向西移动,盛期最大海表温度异常中心位于赤道东太平洋,而CP La Nia海温异常中心少动,基本维持在160°W附近,其强度更强,持续时间更长。受海温分布形态影响,热带大气对两类La Nia的响应非常不同,成熟期间CP型在中太平洋偏旱的强度和范围比EP型大,且略偏西。发展年夏、秋季,北半球位势高度响应较弱;冬季,负PNA位相易伴随两类La Nia出现,但异常活动中心的位置和强度不同,在北大西洋其大气响应几乎相反,这些差异会引起显著不同的区域气候异常。展开更多
The effects of Ni/Co ratios on A2B7-type La0.7Mg0.3 (Ni1-xCox)3.5 (0≤x≤0.5) alloys were investigated. The results showed that the discharge capacity of the alloys first increased from 245 to 392 mAh·g-1, then...The effects of Ni/Co ratios on A2B7-type La0.7Mg0.3 (Ni1-xCox)3.5 (0≤x≤0.5) alloys were investigated. The results showed that the discharge capacity of the alloys first increased from 245 to 392 mAh·g-1, then decreased to 316 mAh·g-1, corresponding to x=0, 0.2 and 0.5, respectively. While the electrochemical impedance spectra indicated that the reaction resistance had the opposite tendency. When x is equal to 0.2, the reaction resistance has the lowest value. The electrochemical P-C-T results are consistent with the discharge ones of the alloys. When x is equal to 0.2, the dehydriding capacity is 1.34wt.%.展开更多
基金the National Key Research and Development Program of China(Grant No.2020YFA0608803)the National Natural Science Foundation of China(Grant Nos.41975107,41875092 and 42005020).
文摘To explain the recent three-year La Niña event from 2020 to 2022,which has caused catastrophic weather events worldwide,Fasullo et al.(2023)demonstrated that the increase in biomass aerosol resulting from the 2019-20 Australian wildfire season could have triggered this multi-year La Niña.Here,we present compelling evidence from paleo-proxies,utilizing a substantial sample size of 26 volcanic eruptions in the Southern Hemisphere(SH),to support the hypothesis that ocean cooling in the SH can lead to a multi-year La Niña event.This research highlights the importance of focusing on the Southern Ocean,as current climate models struggle to accurately simulate the Pacific response driven by the Southern Ocean.
基金supported by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (CASGrant No. ZDBS-LY-DQC010)+3 种基金the National Natural Science Foundation of China (Grant Nos. 4187601242175045)the Strategic Priority Research Program of CAS (Grant No. XDB42000000)Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030004)
文摘Based on the updates of the Climate Prediction Center and International Research Institute for Climate and Society(CPC/IRI)and the China Multi-Model Ensemble(CMME)El Niño-Southern Oscillation(ENSO)Outlook issued in April 2022,La Niña is favored to continue through the boreal summer and fall,indicating a high possibility of a three-year La Niña(2020-23).It would be the first three-year La Niña since the 1998-2001 event,which is the only observed three-year La Niña event since 1980.By examining the status of air-sea fields over the tropical Pacific in March 2022,it can be seen that while the thermocline depths were near average,the southeasterly wind stress was at its strongest since 1980.Here,based on a quaternary linear regression model that includes various relevant air-sea variables over the equatorial Pacific in March,we argue that the historic southeasterly winds over the equatorial Pacific are favorable for the emergence of the third-year La Niña,and both the anomalous easterly and southerly wind stress components are important and contribute~50%of the third-year La Niña growth,respectively.Additionally,the possible global climate impacts of this event are discussed.
文摘利用1951—2010年逐月的HadISST海表温度资料、SODA次表层海温资料和NCEP/NCAR再分析资料等,对比分析了东太平洋(EP型)La Nia和中太平洋(CP型)La Nia的海气耦合特征在季节演变过程中的差异。EP La Nia海表温度异常中心在发展年夏季出现于南美沿岸,随后向西移动,盛期最大海表温度异常中心位于赤道东太平洋,而CP La Nia海温异常中心少动,基本维持在160°W附近,其强度更强,持续时间更长。受海温分布形态影响,热带大气对两类La Nia的响应非常不同,成熟期间CP型在中太平洋偏旱的强度和范围比EP型大,且略偏西。发展年夏、秋季,北半球位势高度响应较弱;冬季,负PNA位相易伴随两类La Nia出现,但异常活动中心的位置和强度不同,在北大西洋其大气响应几乎相反,这些差异会引起显著不同的区域气候异常。
文摘The effects of Ni/Co ratios on A2B7-type La0.7Mg0.3 (Ni1-xCox)3.5 (0≤x≤0.5) alloys were investigated. The results showed that the discharge capacity of the alloys first increased from 245 to 392 mAh·g-1, then decreased to 316 mAh·g-1, corresponding to x=0, 0.2 and 0.5, respectively. While the electrochemical impedance spectra indicated that the reaction resistance had the opposite tendency. When x is equal to 0.2, the reaction resistance has the lowest value. The electrochemical P-C-T results are consistent with the discharge ones of the alloys. When x is equal to 0.2, the dehydriding capacity is 1.34wt.%.