采用EDTA-柠檬酸复合络合法合成了固体氧化物燃料电池(SOFC)纳米阴极粉体La0.6Sr0.4Co0.4Fe0.6O3(LSCF)。运用TG-DTA、FT-IR、XRD、SEM、TEM和电化学分析仪分别对产物形成过程、晶体结构、粉体形貌和电化学性能进行了分析与表征。实验...采用EDTA-柠檬酸复合络合法合成了固体氧化物燃料电池(SOFC)纳米阴极粉体La0.6Sr0.4Co0.4Fe0.6O3(LSCF)。运用TG-DTA、FT-IR、XRD、SEM、TEM和电化学分析仪分别对产物形成过程、晶体结构、粉体形貌和电化学性能进行了分析与表征。实验结果表明:在溶胶-凝胶法制备过程中,采用EDTA和柠檬酸同时作为络合剂进行络合反应所制备的凝胶,能在较低的温度(600℃)下生成按化学计量配比的钙钛矿晶体La0.6Sr0.4Co0.4Fe0.6O3,800℃下煅烧的粉体粒子仅为20~30nm,粒子大小较一致,团聚体较少,呈球形。进一步测试其电化学性能,采用该粉体制备阴极的阳极支撑型SOFC纽扣电池(GDC+Ni GDC LSCF)具有较高的性能,以氢气为燃料,空气为氧化剂,在700℃、750℃工作温度下,最大功率密度分别为0.72 W cm-2,0.85 W cm-2,与相同条件下采用柠檬酸单一络合法制备的LSCF粉体相比,电性能有明显提高,其最大功率在700℃、750℃下分别只有0.22 W cm-2、0.46 W cm-2。展开更多
采用柠檬酸-硝酸盐自蔓延燃烧法分别合成了Pr_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(PSCF)和Gd_(0.2)Ce_(0.8)O_(2-δ)(GDC)粉体,高温固相法合成La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ)(LSGM)电解质粉体。以LSGM为电解质,PSCF同时...采用柠檬酸-硝酸盐自蔓延燃烧法分别合成了Pr_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(PSCF)和Gd_(0.2)Ce_(0.8)O_(2-δ)(GDC)粉体,高温固相法合成La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ)(LSGM)电解质粉体。以LSGM为电解质,PSCF同时作为阴极和阳极,GDC作为功能层材料,构建了对称固体氧化物燃料电池PSCF│GDC│LSGM│GDC│PSCF。利用X射线衍射法研究材料的成相以及相互间的化学稳定性,交流阻抗法记录界面极化行为,用扫描电子显微镜观察电池的断面微结构,用自组装的测试系统评价电池输出性能。结果表明,合成的PSCF粉体呈立方钙钛矿结构,具有良好的氧化–还原可逆性。使用GDC功能层明显改善了氢气环境下PSCF与LSGM材料间的化学相容性以及电池的输出性能,800℃时,电极│电解质界面极化电阻从6.892?·cm^2下降到0.314?·cm^2;以加湿H_2(含体积分数3%的水蒸气)为燃料气,空气为氧化气时,单电池输出功率密度由269 m W/cm2增大至463 m W/cm^2。研究结果显示,PSCF是对称固体氧化物燃料电池良好的候选电极材料,GDC功能层对改善电池长期稳定性能具有潜在的应用价值。展开更多
采用高温固相法合成Ca取代Sr3Al0.6Si0.4O4.4F0.6∶Ce3+中Sr的Sr3-x Ca x Al0.6Si0.4O4.4F0.6∶Ce3+荧光粉。由于Sr3Al0.6Si0.4O4.4F0.6∶Ce3+中Sr具有十配位Sr(1)和八配位Sr(2),所以激活剂离子Ce3+也具有两个不同的占位。结合Ce3+的光...采用高温固相法合成Ca取代Sr3Al0.6Si0.4O4.4F0.6∶Ce3+中Sr的Sr3-x Ca x Al0.6Si0.4O4.4F0.6∶Ce3+荧光粉。由于Sr3Al0.6Si0.4O4.4F0.6∶Ce3+中Sr具有十配位Sr(1)和八配位Sr(2),所以激活剂离子Ce3+也具有两个不同的占位。结合Ce3+的光谱结果和Van Uitert经验公式,分别研究了十配位Ce(1)3+和八配位Ce(2)3+的猝灭浓度和荧光寿命,指出是由于Ca的掺入减小了Ce(1)3+发光中心,增加了Ce(2)3+发光中心,从而出现随着Ca/Sr比增加,样品在400 nm激发下发光强度减小,而在460 nm激发下发光强度增大的现象。同时,Ca的掺入增强了粉体发光的热稳定性。调节Ca含量可以使粉体实现从绿黄色到黄色的发光,表明Sr3-x Ca x Al0.6Si0.4-O4.4F0.6∶Ce3+荧光粉是一款潜在的适合近紫外和蓝光激发的白光LED用荧光粉。展开更多
采用溶胶-凝胶法制备Sr Ti_(0.6)Fe_(0.4)O_(3-δ),通过掺杂少量YSZ制备YSZ-Sr Ti_(0.6)Fe_(0.4)O_(3-δ)复相陶瓷。采用电化学工作站测试样品电子-离子混合传导及离子传导的阻抗谱和频谱特性,结果表明,YSZ-Sr Ti_(0.6)Fe_(0.4)O_(3-δ...采用溶胶-凝胶法制备Sr Ti_(0.6)Fe_(0.4)O_(3-δ),通过掺杂少量YSZ制备YSZ-Sr Ti_(0.6)Fe_(0.4)O_(3-δ)复相陶瓷。采用电化学工作站测试样品电子-离子混合传导及离子传导的阻抗谱和频谱特性,结果表明,YSZ-Sr Ti_(0.6)Fe_(0.4)O_(3-δ)在电子-离子混合传导过程中存在三种不同的极化过程,分别来自于晶粒,晶界和电极/样品,通过等效电路对阻抗谱的拟合,活化能分别为0.16 e V,0.62 e V和0.42 e V,随温度的升高,晶粒弛豫不明显,样品电阻主要由晶界的极化过程控制;在离子传导过程中,只存在一个晶界弛豫过程,晶界弛豫随温度的升高而减小,试样的弛豫时间为~0.13-0.29 s。展开更多
文摘采用EDTA-柠檬酸复合络合法合成了固体氧化物燃料电池(SOFC)纳米阴极粉体La0.6Sr0.4Co0.4Fe0.6O3(LSCF)。运用TG-DTA、FT-IR、XRD、SEM、TEM和电化学分析仪分别对产物形成过程、晶体结构、粉体形貌和电化学性能进行了分析与表征。实验结果表明:在溶胶-凝胶法制备过程中,采用EDTA和柠檬酸同时作为络合剂进行络合反应所制备的凝胶,能在较低的温度(600℃)下生成按化学计量配比的钙钛矿晶体La0.6Sr0.4Co0.4Fe0.6O3,800℃下煅烧的粉体粒子仅为20~30nm,粒子大小较一致,团聚体较少,呈球形。进一步测试其电化学性能,采用该粉体制备阴极的阳极支撑型SOFC纽扣电池(GDC+Ni GDC LSCF)具有较高的性能,以氢气为燃料,空气为氧化剂,在700℃、750℃工作温度下,最大功率密度分别为0.72 W cm-2,0.85 W cm-2,与相同条件下采用柠檬酸单一络合法制备的LSCF粉体相比,电性能有明显提高,其最大功率在700℃、750℃下分别只有0.22 W cm-2、0.46 W cm-2。
文摘采用柠檬酸-硝酸盐自蔓延燃烧法分别合成了Pr_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(PSCF)和Gd_(0.2)Ce_(0.8)O_(2-δ)(GDC)粉体,高温固相法合成La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ)(LSGM)电解质粉体。以LSGM为电解质,PSCF同时作为阴极和阳极,GDC作为功能层材料,构建了对称固体氧化物燃料电池PSCF│GDC│LSGM│GDC│PSCF。利用X射线衍射法研究材料的成相以及相互间的化学稳定性,交流阻抗法记录界面极化行为,用扫描电子显微镜观察电池的断面微结构,用自组装的测试系统评价电池输出性能。结果表明,合成的PSCF粉体呈立方钙钛矿结构,具有良好的氧化–还原可逆性。使用GDC功能层明显改善了氢气环境下PSCF与LSGM材料间的化学相容性以及电池的输出性能,800℃时,电极│电解质界面极化电阻从6.892?·cm^2下降到0.314?·cm^2;以加湿H_2(含体积分数3%的水蒸气)为燃料气,空气为氧化气时,单电池输出功率密度由269 m W/cm2增大至463 m W/cm^2。研究结果显示,PSCF是对称固体氧化物燃料电池良好的候选电极材料,GDC功能层对改善电池长期稳定性能具有潜在的应用价值。
文摘采用高温固相法合成Ca取代Sr3Al0.6Si0.4O4.4F0.6∶Ce3+中Sr的Sr3-x Ca x Al0.6Si0.4O4.4F0.6∶Ce3+荧光粉。由于Sr3Al0.6Si0.4O4.4F0.6∶Ce3+中Sr具有十配位Sr(1)和八配位Sr(2),所以激活剂离子Ce3+也具有两个不同的占位。结合Ce3+的光谱结果和Van Uitert经验公式,分别研究了十配位Ce(1)3+和八配位Ce(2)3+的猝灭浓度和荧光寿命,指出是由于Ca的掺入减小了Ce(1)3+发光中心,增加了Ce(2)3+发光中心,从而出现随着Ca/Sr比增加,样品在400 nm激发下发光强度减小,而在460 nm激发下发光强度增大的现象。同时,Ca的掺入增强了粉体发光的热稳定性。调节Ca含量可以使粉体实现从绿黄色到黄色的发光,表明Sr3-x Ca x Al0.6Si0.4-O4.4F0.6∶Ce3+荧光粉是一款潜在的适合近紫外和蓝光激发的白光LED用荧光粉。
文摘采用溶胶-凝胶法制备Sr Ti_(0.6)Fe_(0.4)O_(3-δ),通过掺杂少量YSZ制备YSZ-Sr Ti_(0.6)Fe_(0.4)O_(3-δ)复相陶瓷。采用电化学工作站测试样品电子-离子混合传导及离子传导的阻抗谱和频谱特性,结果表明,YSZ-Sr Ti_(0.6)Fe_(0.4)O_(3-δ)在电子-离子混合传导过程中存在三种不同的极化过程,分别来自于晶粒,晶界和电极/样品,通过等效电路对阻抗谱的拟合,活化能分别为0.16 e V,0.62 e V和0.42 e V,随温度的升高,晶粒弛豫不明显,样品电阻主要由晶界的极化过程控制;在离子传导过程中,只存在一个晶界弛豫过程,晶界弛豫随温度的升高而减小,试样的弛豫时间为~0.13-0.29 s。