NiO-La0.3Ce0.7O2-δ(LDC30) novel anode was investigated for IT-SOFCs(Intermediate Temperature-Solid Oxide Fuel Cells) with LaGaO3-based electrolyte. The results showed that LDC30 has a suitable chemical compatibility ...NiO-La0.3Ce0.7O2-δ(LDC30) novel anode was investigated for IT-SOFCs(Intermediate Temperature-Solid Oxide Fuel Cells) with LaGaO3-based electrolyte. The results showed that LDC30 has a suitable chemical compatibility with NiO and NiO-LDC30 has a good thermal expansion matching with LDC30 interlayer and LSGM(La0.8Sr0.2Ga0.8Mg0.2O3-δ) electrolyte, so NiO-LDC30/LDC30 was considered as a feasible and novel anode system. It was also shown that NiO content plays a key role on polarization performance and morphology of the anode. When the content of NiO was 60%(mass fraction), the polarization loss of anode was the lowest. Next we will optimize the porosity and sintering procedure to modify the microstructure and performance of the anode.展开更多
Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells(SOFCs) due to their high conductivity and low activation energy. However, the lower operation tempe...Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells(SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La_(0.8)Sr_(0.2)MnO_(3-δ)(LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures.Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below600℃ with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped Ba ZrO_3(BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600 ℃. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures(above 700 ℃).展开更多
Mixed ionic-electronic conductors in the family of LaxSr1-xCoyFe1-y O3-δ have been widely studied as cathode materials for solid oxide fuel cells (SOFCs). However, the long-term stability was a concern. Here we rep...Mixed ionic-electronic conductors in the family of LaxSr1-xCoyFe1-y O3-δ have been widely studied as cathode materials for solid oxide fuel cells (SOFCs). However, the long-term stability was a concern. Here we report our findings on the effect of a thin film coating of La0.85Sr0.15MnO3-δ (LSM) on the performance of a porous La0.6Sr0.4Co0.2Feo.8O3-δ(LSCF) cathode. When the thicknesses of the LSM coatings are appropriate, an LSM-coated LSCF electrode showed better stability and lower polarization (or higher activity) than the blank LSCF cathode without LSM infiltration. An anode-supported cell with an LSM-infiltrated LSCF cathode demonstrated at 825 ℃ a peak power density of -1.07 W/cm2, about 24% higher than that of the same cell without LSM infiltration (-0.86 W/cm2). Further, the LSM coating enhanced the stability of the electrode; there was little degradation in performance for the cell with an LSM-infiltrated LSCF cathode during 100 h operation.展开更多
Effects of SO2 in ambient air on the performance and durability of solid oxide fuel cell(SOFC) cathode were evaluated by galvanostatic measurement. Comparison between two cathode materials was made to consider the c...Effects of SO2 in ambient air on the performance and durability of solid oxide fuel cell(SOFC) cathode were evaluated by galvanostatic measurement. Comparison between two cathode materials was made to consider the cathode degradation mechanisms. The degradation performance is associated with a slow decomposition of the La0.6Sr0.4Co0.2Fe0.8O3(LSCF) due to the segregation of strontium oxide. Negligible deterioration for (La0.7Sr0.3)MnO3 (LSM) cathode was caused by SO2 poisoning under a current density of 200 mA/cm2. Metal sulphate formation may explain a slight deterioration under increasing high the concentration of SO2. It was verified that the poisoning mechanism for the two cathode materials resulted from the gradual decomposition of the cathode materials.展开更多
选择具有双钙钛矿结构的Sr2Fe Nb O6(SFN)及La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)材料混合作为固体氧化物电解池(SOEC)的阴极,在SFN-LSGM中掺杂不同比例的淀粉,经过干压成型并在1400℃下烧结后得到测试样。利用真实密度仪及阿基米德法测定...选择具有双钙钛矿结构的Sr2Fe Nb O6(SFN)及La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)材料混合作为固体氧化物电解池(SOEC)的阴极,在SFN-LSGM中掺杂不同比例的淀粉,经过干压成型并在1400℃下烧结后得到测试样。利用真实密度仪及阿基米德法测定了样品的孔隙率;利用热分析仪测定了不同孔隙率的样品在35~1400℃条件下的热膨胀系数,研究该材料与常用SOEC电解质材料La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)的热匹配性能;之后利用电化学工作站测试了该材料在纯氢气气氛下电导率与孔隙率的关系。结果表明,样品孔隙率与淀粉掺杂量成正比,孔隙率对该材料热膨胀系数影响不大,且该材料与LSGM电解池热匹配性能良好。另外,当样品孔隙率增加时,该材料在850℃纯氢气气氛下的电导率在18%孔隙率时达到最大值。展开更多
文摘NiO-La0.3Ce0.7O2-δ(LDC30) novel anode was investigated for IT-SOFCs(Intermediate Temperature-Solid Oxide Fuel Cells) with LaGaO3-based electrolyte. The results showed that LDC30 has a suitable chemical compatibility with NiO and NiO-LDC30 has a good thermal expansion matching with LDC30 interlayer and LSGM(La0.8Sr0.2Ga0.8Mg0.2O3-δ) electrolyte, so NiO-LDC30/LDC30 was considered as a feasible and novel anode system. It was also shown that NiO content plays a key role on polarization performance and morphology of the anode. When the content of NiO was 60%(mass fraction), the polarization loss of anode was the lowest. Next we will optimize the porosity and sintering procedure to modify the microstructure and performance of the anode.
基金supported by the National Natural Science Foundation of China (51602238)the Thousand Talents Plan
文摘Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells(SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La_(0.8)Sr_(0.2)MnO_(3-δ)(LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures.Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below600℃ with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped Ba ZrO_3(BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600 ℃. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures(above 700 ℃).
基金supported by the Department of Energy (National Energy Technology Laboratory) SECA Core Technology Program under Award Number DE-NT0006557 and DE-FE0009652by NSFC under grant No.51002182
文摘Mixed ionic-electronic conductors in the family of LaxSr1-xCoyFe1-y O3-δ have been widely studied as cathode materials for solid oxide fuel cells (SOFCs). However, the long-term stability was a concern. Here we report our findings on the effect of a thin film coating of La0.85Sr0.15MnO3-δ (LSM) on the performance of a porous La0.6Sr0.4Co0.2Feo.8O3-δ(LSCF) cathode. When the thicknesses of the LSM coatings are appropriate, an LSM-coated LSCF electrode showed better stability and lower polarization (or higher activity) than the blank LSCF cathode without LSM infiltration. An anode-supported cell with an LSM-infiltrated LSCF cathode demonstrated at 825 ℃ a peak power density of -1.07 W/cm2, about 24% higher than that of the same cell without LSM infiltration (-0.86 W/cm2). Further, the LSM coating enhanced the stability of the electrode; there was little degradation in performance for the cell with an LSM-infiltrated LSCF cathode during 100 h operation.
基金Supported by the National Natural Science Foundation of China(No.50872041)the Research Funds of Industrial Technology Research and Development Projects of Jilin Province, China(No.JF2012C024)+1 种基金the Natural Science Foundation of Jilin Province,China(No.201215109)the Science and Technology Research Projects of Education Department of Jilin Province, China(No.2011205)
文摘Effects of SO2 in ambient air on the performance and durability of solid oxide fuel cell(SOFC) cathode were evaluated by galvanostatic measurement. Comparison between two cathode materials was made to consider the cathode degradation mechanisms. The degradation performance is associated with a slow decomposition of the La0.6Sr0.4Co0.2Fe0.8O3(LSCF) due to the segregation of strontium oxide. Negligible deterioration for (La0.7Sr0.3)MnO3 (LSM) cathode was caused by SO2 poisoning under a current density of 200 mA/cm2. Metal sulphate formation may explain a slight deterioration under increasing high the concentration of SO2. It was verified that the poisoning mechanism for the two cathode materials resulted from the gradual decomposition of the cathode materials.
文摘选择具有双钙钛矿结构的Sr2Fe Nb O6(SFN)及La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)材料混合作为固体氧化物电解池(SOEC)的阴极,在SFN-LSGM中掺杂不同比例的淀粉,经过干压成型并在1400℃下烧结后得到测试样。利用真实密度仪及阿基米德法测定了样品的孔隙率;利用热分析仪测定了不同孔隙率的样品在35~1400℃条件下的热膨胀系数,研究该材料与常用SOEC电解质材料La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)的热匹配性能;之后利用电化学工作站测试了该材料在纯氢气气氛下电导率与孔隙率的关系。结果表明,样品孔隙率与淀粉掺杂量成正比,孔隙率对该材料热膨胀系数影响不大,且该材料与LSGM电解池热匹配性能良好。另外,当样品孔隙率增加时,该材料在850℃纯氢气气氛下的电导率在18%孔隙率时达到最大值。