The objective of this project is to explore the possibility of using X-10 and LabVIEW to control the device in the house. Based on the serial port communication of LabVIEW, the X-10 module can be programmed by using t...The objective of this project is to explore the possibility of using X-10 and LabVIEW to control the device in the house. Based on the serial port communication of LabVIEW, the X-10 module can be programmed by using the X-10 commands. Through the power line, all the devices connected to the socket will be controlled. Without replacing the existing wire, it must be an easy control system for the user who has no experience in electronics or communication engineering. Actually, this is a quite practical X-10 home automation system.展开更多
A data acquisition system based on LabVIEW and NI PXI-5105 is presented for multi-channel data acquisition. It can realize the functions of parameter setting, data acquisition and storage, waveform display and data an...A data acquisition system based on LabVIEW and NI PXI-5105 is presented for multi-channel data acquisition. It can realize the functions of parameter setting, data acquisition and storage, waveform display and data analysis using LabVIEW and NI-SCOPE device driver. The advantages of the system are that the setting is convenient, the operation is easy, the interface is friendly and the functions are practical. The experiment results show that the system has good stability and high reliability and is a powerful tool for multi-channel data acquisition.展开更多
The effect of the wide and narrow azimuth 3D observation systems on seismic imaging precision is becoming a hot area for studies of high precision 3D seismic acquisition methods in recent years. In this paper we utili...The effect of the wide and narrow azimuth 3D observation systems on seismic imaging precision is becoming a hot area for studies of high precision 3D seismic acquisition methods in recent years. In this paper we utilize 3D physical seismic modeling experiments. A 3D channel sand body physical seismic model is constructed and two acquisition systems are designed with wide azimuth (16 lines) and narrow azimuth (8 lines) to model 3D seismic data acquisition and processing seismic work flows. From analysis of migrated time slice data with high quality and small size, we conclude that when the overlying layers are smooth and lateral velocities have little change, both wide and narrow azimuth observation systems in 3D acquisition can be used for obtaining high precision imaging and equivalent resolution of the channel sand body.展开更多
文摘The objective of this project is to explore the possibility of using X-10 and LabVIEW to control the device in the house. Based on the serial port communication of LabVIEW, the X-10 module can be programmed by using the X-10 commands. Through the power line, all the devices connected to the socket will be controlled. Without replacing the existing wire, it must be an easy control system for the user who has no experience in electronics or communication engineering. Actually, this is a quite practical X-10 home automation system.
文摘A data acquisition system based on LabVIEW and NI PXI-5105 is presented for multi-channel data acquisition. It can realize the functions of parameter setting, data acquisition and storage, waveform display and data analysis using LabVIEW and NI-SCOPE device driver. The advantages of the system are that the setting is convenient, the operation is easy, the interface is friendly and the functions are practical. The experiment results show that the system has good stability and high reliability and is a powerful tool for multi-channel data acquisition.
基金supported by the National Basic Research Program (the 973 Program, No. 2007CB209601).
文摘The effect of the wide and narrow azimuth 3D observation systems on seismic imaging precision is becoming a hot area for studies of high precision 3D seismic acquisition methods in recent years. In this paper we utilize 3D physical seismic modeling experiments. A 3D channel sand body physical seismic model is constructed and two acquisition systems are designed with wide azimuth (16 lines) and narrow azimuth (8 lines) to model 3D seismic data acquisition and processing seismic work flows. From analysis of migrated time slice data with high quality and small size, we conclude that when the overlying layers are smooth and lateral velocities have little change, both wide and narrow azimuth observation systems in 3D acquisition can be used for obtaining high precision imaging and equivalent resolution of the channel sand body.