期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Soil Organic Carbon and Labile Carbon Along a Precipitation Gradient and Their Responses to Some Environmental Changes 被引量:12
1
作者 WANG Shu-Ping ZHOU Guang-Sheng +1 位作者 GAO Su-Hua GUO Jian-Ping 《Pedosphere》 SCIE CAS CSCD 2005年第5期676-680,共5页
Based on data from a field survey in 2001 along the Northeast China transect (NECT), a precipitation gradient,and a short-term simulation experiment under ambient CO2 of 350 μmol mol-1 and doubled CO2 of 700 μmol mo... Based on data from a field survey in 2001 along the Northeast China transect (NECT), a precipitation gradient,and a short-term simulation experiment under ambient CO2 of 350 μmol mol-1 and doubled CO2 of 700 μmol mol-1with different soil moisture contents of 30%-45%, 45%-60%, and 60%-80% soil water holding capacity, the distributionof soil organic carbon and labile carbon along the NECT, their relationships with precipitation and their responses toCO2 enrichment and soil moisture changes were analyzed. The results indicated that the soil labile carbon along thegradient was significantly related to soil organic carbon (r = 0.993, P < 0.001). The soil labile carbon decreased morerapidly with depth than organic carbon. The soil organic and labile carbon along the gradient decreased with decrease inlongitude in both the topsoils and subsoils, and the coefficient of variation for the labile carbon was greater than that forthe organic carbon. Both the soil organic carbon and labile carbon had significant linear relationships with precipitation,with the correlation coefficient of soil organic carbon being lower (0.677 at P < 0.001) than that of soil labile carbon(0.712 at P < 0.001). In the simulation experiment with doubled and ambient CO2 and different moisture contents, thecoefficient of variation for soil organic carbon was only 1.3%, while for soil labile carbon it was 29.7%. With doubled CO2concentration (700 μmol mol-1), soil labile carbon decreased significantly at 45% to 60% of soil moisture content. Theseindicated that soil labile carbon was relatively more sensitive to environmental changes than soil organic carbon. 展开更多
关键词 environmental changes labile carbon organic carbon precipitation gradient SOIL
下载PDF
Key Physical Factors Affecting Spatial-temporal Variation of Labile Organic Carbon Fractions by Biochar Driven in Mollisols Region of Northeast China
2
作者 Zhao Wei Liang Fangyuan +4 位作者 Liang Ying Zhao Hongrui Hao Shuai Wang Hongyan Wang Daqing 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期28-41,共14页
Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between phy... Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between physical properties and LOC fractions. A field positioning experiment was performed in Mollisols region of Northeast China to evaluate the influence of maize stalk biochar on the spatial distribution and temporal changes of physical properties and LOC fractions. Maize stalk biochar treatments included C1(1.5 kg·hm^(-2)), C2(3 kg·hm^(-2)), C3(15 kg·hm^(-2)), C4(30 kg·hm^(-2)), and CK(0). The results showed that maize stalk biochar increased soil water contents(SWC) and soil porosity(SP), but reduced bulk density(BD). Maize stalk biochar reduced dissolved organic carbon(DOC) contents in the 0-20 cm soil layer, ranging from 0.25 g·kg^(-1) to 0.31 g·kg^(-1) in harvest period, while increased in the 20-40 cm soil layer. In addition, the application of biochar had a significant impact on the spatial distribution and temporal change of SWC, BD, SP, DOC, hot-water extractable carbon(HWC), acid hydrolyzed organic carbon(AHC Ⅰ, Ⅱ), and readily oxidized organic carbon(ROC). High amounts of maize stalk biochar up-regulated the contents of soil organic carbon SOC, HWC, AHC Ⅰ, AHC Ⅱ, and ROC. In addition, SWC and SP were the key physical factors to affect LOC fractions. In conclusions, maize stalk biochar could improve physical properties, and then influence LOC fractions, and maize stalk biochar could be used as an organic amendment for restoring degraded soils governed by their rates of addition. 展开更多
关键词 maize stalk biochar labile organic carbon fraction Mollisols region soil physical property dissolved organic carbon
下载PDF
Can soil organic carbon sequestration and the carbon management index be improved by changing the film mulching methods in the semiarid region?
3
作者 Jialin Yang Liangqi Ren +6 位作者 Nanhai Zhang Enke Liu Shikun Sun Xiaolong Ren Zhikuan Jia Ting Wei Peng Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1541-1556,共16页
Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains cont... Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area. 展开更多
关键词 plastic film mulching soil organic carbon labile organic carbon fractions semiarid area
下载PDF
Inclusion of peanut in wheat–maize rotation increases wheat yield and net return and improves soil organic carbon pool by optimizing bacterial community 被引量:3
4
作者 ZOU Xiao-xia HUANG Ming-ming +5 位作者 LIU Yan SI Tong ZHANG Xiao-jun YU Xiao-na GUO Feng WAN Shu-bo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第11期3430-3443,共14页
Improving soil quality while achieving higher productivity is the major challenge in the agricultural industry. Wheat(Triticum aestivum L.)–maize(Zea mays L.)(W–M) rotation is the dominant planting pattern in the Hu... Improving soil quality while achieving higher productivity is the major challenge in the agricultural industry. Wheat(Triticum aestivum L.)–maize(Zea mays L.)(W–M) rotation is the dominant planting pattern in the Huang-HuaiHai Plain and is important for food security in China. However, the soil quality is deteriorating due to the W–M rotation’s long-term, intensive, and continuous cultivation. Introducing legumes into the W–M rotation system may be an effective way to improve soil quality. In this study, we aimed to verify this hypothesis by exploring efficient planting systems(wheat–peanut(Arachis hypogaea L.)(W–P) rotation and wheat rotated with maize and peanut intercropping(W–M/P)) to achieve higher agricultural production in the Huang-Huai-Hai Plain. Using traditional W–M rotation as the control, we evaluated crop productivity, net returns, soil microorganisms(SMs), and soil organic carbon(SOC) fractions for three consecutive years. The results indicated that wheat yields were significantly increased under W–P and W–M/P(382.5–579.0 and 179.8–513.1 kg ha-1, respectively) compared with W–M. W–P and W–M/P provided significantly higher net returns(58.2 and 70.4%, respectively) than W–M. W–M/P and W–M retained the SOC stock more efficiently than W–P, increasing by 25.46–31.03 and 14.47–27.64%, respectively, in the 0–20 cm soil layer. Compared with W–M, W–M/P improved labile carbon fractions;the sensitivity index of potentially mineralizable carbon, microbial biomass carbon(MBC), and dissolved organic carbon was 31.5, 96.5–157.2, and 17.8% in 20–40, 10–40, and 10–20 cm soil layers, respectively. The bacterial community composition and bacteria function were altered as per the soil depth and planting pattern. W–M/P and W–M exhibited similar bacterial community composition and function in 0–20 and 20–40 cm soil layers. Compared with W–P, a higher abundance of functional genes, namely, contains mobile elements and stress-tolerant, and a lower abundance of genes, namely,potentially pathogenic, were observed in the 10–20 cm soil layer of W–M and the 0–20 cm soil layer of W–M/P. SOC and MBC were the main factors affecting soil bacterial communities, positively correlated with Sphingomonadales and Gemmatimonadales and negatively correlated with Blastocatellales. Organic input was the main factor affecting SOC and SMs, which exhibited feedback effects on crop productivity. In summary, W–M/P improved productivity, net returns, and SOC pool compared with traditional W–M rotation systems, and it is recommended that plant–soil–microbial interactions be considered while designing high-yield cropping systems. 展开更多
关键词 composite planting carbon sequestration labile carbon fraction bacterial community structure bacterial functions
下载PDF
Reclamation during oasification is conducive to the accumulation of the soil organic carbon pool in arid land
5
作者 YANG Yuxin GONG Lu TANG Junhu 《Journal of Arid Land》 SCIE CSCD 2023年第3期344-358,共15页
Soil organic carbon(SOC)and its stable isotope composition reflect key information about the carbon cycle in ecosystems.Studies of carbon fractions in oasis continuous cotton-cropped fields can elucidate the SOC stabi... Soil organic carbon(SOC)and its stable isotope composition reflect key information about the carbon cycle in ecosystems.Studies of carbon fractions in oasis continuous cotton-cropped fields can elucidate the SOC stability mechanism under the action of the human-land relationship during the oasification of arid land,which is critical for understanding the carbon dynamics of terrestrial ecosystems in arid lands under global climate change.In this study,we investigated the Alar Reclamation Area on the northern edge of the Tarim Basin,Xinjiang Uygur Autonomous Region of China,in 2020.In original desert and oasis farmlands with different reclamation years,including 6,10,18,and 30 a,and different soil depths(0-20,20-40,40-60 cm),we analyzed the variations in SOC,very liable carbon(C_(VL)),liable carbon(C_(L)),less liable carbon(C_(LL)),and non-liable carbon(C_(NL))using the method of spatial series.The differences in the stable carbon isotope ratio(δ^(13)C)and beta(β)values reflecting the organic carbon decomposition rate were also determined during oasification.Through redundancy analysis,we derived and discussed the relationships among SOC,carbon fractions,δ^(13)C,and other soil physicochemical properties,such as the soil water content(SWC),bulk density(BD),pH,total salt(TS),total nitrogen(TN),available phosphorus(AP),and available potassium(AK).The results showed that there were significant differences in SOC and carbon fractions of oasis farmlands with different reclamation years,and the highest SOC was observed at the oasis farmland with 30-a reclamation year.C_(VL),C_(L),C_(LL),and C_(NL) showed significant changes among oasis farmlands with different reclamation years,and C_(VL) had the largest variation range(0.40-4.92 g/kg)and accounted for the largest proportion in the organic carbon pool.The proportion of C_(NL) in the organic carbon pool of the topsoil(0-20 cm)gradually increased.δ^(13)C varied from-25.61‰to-22.58‰,with the topsoil showing the most positive value at the oasis farmland with 10-a reclamation year;while theβvalue was the lowest at the oasis farmland with 6-a reclamation year and then increased significantly.Based on the redundancy analysis results,the soil physicochemical properties,such as TN,AP,AK,and pH,were significantly correlated with C_(L),and TN and AP were positively correlated with C_(VL).However,δ^(13)C was not significantly influenced by soil physicochemical properties.Our analysis advances the understanding of SOC dynamics during oasification,revealing the risk of soil carbon loss and its contribution to terrestrial carbon accumulation in arid lands,which could be useful for the sustainable development of regional carbon resources and ecological protection in arid ecosystem. 展开更多
关键词 OASIFICATION soil organic carbon carbon fractions labile carbon δ^(13)C arid land
下载PDF
Changes of Soil Labile Organic Carbon in Different Land Uses in Sanjiang Plain, Heilongjiang Province 被引量:19
6
作者 ZHANG Guilan 《Chinese Geographical Science》 SCIE CSCD 2010年第2期139-143,共5页
In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different... In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different land uses on soil labile organic carbon,soils of Calamagrostis angustifolia wetland,Carex lasiocarpa wetland,dry farmland,paddy field,forest land and abandoned cultivated land were collected for measuring the contents of soil microbial biomass carbon (MBC),dissolved organic carbon (DOC),readily oxidizable carbon (ROC) and carbohydrate carbon (CHC). The results show that soil organic carbon contents follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland. The contents of MBC and DOC in Calamagrostis angustifolia and Carex lasiocarpa wetlands are significantly higher than those in other land use types. The contents of CHC and ROC are the highest in Calamagrostis angustifolia wetland and the lowest in dry farmland. The contents of all the labile organic carbon increase along with the years of abandonment of cultivated land. The ratios of MBC,DOC and ROC to SOC also follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland,while the ratio of CHC to SOC is paddy field>forest field>Carex lasiocarpa wetland>Carex lasiocarpa wetland>dry farmland. When natural wetlands were cultivated,the activity of soil organic carbon tends to reduce in some extent due to the disappearance of heterotrophic environment and the reduction of vegetation residue. Thus,the abandonment of cultivated land is an effective way for restoring soil organic carbon. 展开更多
关键词 labile organic carbon land use Sanjiang Plain
下载PDF
The impact of land use change on soil organic carbon and labile organic carbon stocks in the Longzhong region of Loess Plateau 被引量:14
7
作者 LiHua ZHANG ZhongKui XIE +1 位作者 RuiFeng ZHAO YaJun WANG 《Journal of Arid Land》 SCIE 2012年第3期241-250,共10页
Land use change (LUC) is widely recognized as one of the most important driving forces of global carbon cycles. The soil organic carbon (SOC) and labile organic carbon (LOC) stores were investigated at arable la... Land use change (LUC) is widely recognized as one of the most important driving forces of global carbon cycles. The soil organic carbon (SOC) and labile organic carbon (LOC) stores were investigated at arable land (AL), artificial grassland (AG), artificial woodland (AW), abandoned arable land (AAL) and desert steppe (DS) in the Longzhong region of the Loess Plateau in Northwest China. The results showed that conversions from DS to AL, AL to AG and AL to AAL led to an increase in SOC content, while the conversion from DS to AW led to a decline. The differences in SOC content were significant between DS and AW at the 20-40 cm depth and between AL and AG at the 0-10 cm depth. The SOC stock in DS at the 0-100 cm depth was 39.4 t/hm2, increased by 28.48% after cultivation and decreased by 19.12% after conversion to AW. The SOC stocks increased by 2.11% from AL to AG and 5.10% from AL to AAL. The LOC stocks changed by a larger magnitude than the SOC stocks, which suggests that it is a more sensitive index of carbon dynamics under a short-term LUC. The LOC stocks increased at 0-20 cm and 0-100 cm depths from DS to AW, which is opposite to that observed for SOC. The proportion of LOC to SOC ranged from 0.14 to 0.20 at the 0-20 cm depth for all the five land use types, indicating low SOC dynamics. The allocation proportion of LOC increased for four types of LUC conversion, and the change in magnitude was largest for DS to AW (40.91%). The afforestation, abandonment and forage planting on arable land led to sequestration of SOC; the carbon was lost initially after afforestation. However, the carbon sink effect after abandonment may not be sustainable in the study area. 展开更多
关键词 carbon sequestration labile organic carbon land use CULTIVATION ABANDONMENT Loess Plateau
下载PDF
Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation 被引量:8
8
作者 SHAO Jing'an LI Yangbing +1 位作者 WEI Chaofu XIE Deti 《Chinese Geographical Science》 SCIE CSCD 2009年第3期241-248,共8页
A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the... A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indicated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And, different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0-10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC. 展开更多
关键词 NO-TILLAGE rice-wheat rotation ridge culture labile organic carbon fraction rice cultivation
下载PDF
Decomposition characteristics of organic materials and their effects on labile and recalcitrant organic carbon fractions in a semi-arid soil under plastic mulch and drip irrigation 被引量:9
9
作者 hu juan wu jinggui qu xiaojing 《Journal of Arid Land》 SCIE CSCD 2018年第1期115-128,共14页
Labile organic carbon (LC) and recalcitrant organic carbon (RC) are two major fractions of soil organic carbon (SOC) and play a critical role in organic carbon turnover and sequestration. The aims of this study ... Labile organic carbon (LC) and recalcitrant organic carbon (RC) are two major fractions of soil organic carbon (SOC) and play a critical role in organic carbon turnover and sequestration. The aims of this study were to evaluate the variations of LC and RC in a semi-arid soil (Inner Mongolia, China) under plastic mulch and drip irrigation after the application of organic materials (OMs), and to explore the effects of OMs from various sources on LC and RC by probing the decomposition characteristics of OMs using in-situ nylon mesh bags burying method. The field experiment included seven treatments, i.e., chicken manure (CM), sheep manure (SM), mushroom residue (MR), maize straw (MS), fodder grass (FG), tree leaves (TL) and no OMs as a control (CK). Soil LC and RC were separated by Huygens D's method (particle size-density), and the average soil mass recovery rate and carbon recovery rate were above 95%, which indicated this method was suitable for carbon pools size analysis. The LC and RC contents significantly (P〈0.01) increased after the application of OMs. Moreover, LC and RC contents were 3.2%-8.6% and 5.0%-9.4% higher in 2016 than in 2015. The applications of CM and SM significantly increased (P〈0,01) LC content and LC/SOC ratio, whereas they were the lowest after the application of TL. However, SOC and RC contents were significantly higher (P〈0.01) after the applications of TL and MS. The correlation analysis indicated the decomposition rate of OMs was positively related with LC content and LC/SOC ratio. In addition, lignin, polyphenol, WOM (total water-soluble organic matter), WHA (water-soluble humic acid), HSL (humicdike substance) and HAL (humic acid-like) contents in initial OMs played important roles in SOC and RC. In-situ nylon mesh bags burying experiment indicated the decomposition rates of CM, SM and MS were significantly higher than those of MR, FG, and TL. Furthermore, MS could result in more lignin derivatives, WHA, and HAL polymers in shorter time during the decomposition process. In conclusion, the application of MS in the semi-arid soil under a long-term plastic mulch and drip irrigation condition could not only improve soil fertility, but also enhance soil carbon sequestration. 展开更多
关键词 organic materials labile organic carbon recalcitrant organic carbon decomposition characteristics plasticmulch drip irrigation Inner Mongolia
下载PDF
Corn straw return can increase labile soil organic carbon fractions and improve water-stable aggregates in Haplic Cambisol 被引量:6
10
作者 Batande Sinovuyo NDZELU DOU Sen ZHANG Xiaowei 《Journal of Arid Land》 SCIE CSCD 2020年第6期1018-1030,共13页
Corn straw return to the field is a vital agronomic practice for increasing soil organic carbon(SOC)and its labile fractions,as well as soil aggregates and organic carbon(OC)associated with water-stable aggregates(WSA... Corn straw return to the field is a vital agronomic practice for increasing soil organic carbon(SOC)and its labile fractions,as well as soil aggregates and organic carbon(OC)associated with water-stable aggregates(WSA).Moreover,the labile SOC fractions play an important role in OC turnover and sequestration.The aims of this study were to determine how different corn straw returning modes affect the contents of labile SOC fractions and OC associated with WSA.Corn straw was returned in the following depths:(1)on undisturbed soil surface(NTS),(2)in the 0–10 cm soil depth(MTS),(3)in the 0–20 cm soil depth(CTS),and(4)no corn straw applied(CK).After five years(2014–2018),soil was sampled in the 0–20 and 20–40 cm depths to measure the water-extractable organic C(WEOC),permanganate oxidizable C(KMnO4-C),light fraction organic C(LFOC),and WSA fractions.The results showed that compared with CK,corn straw amended soils(NTS,MTS and CTS)increased SOC content by 11.55%–16.58%,WEOC by 41.38%–51.42%,KMnO4-C and LFOC by 29.84%–34.09%and 56.68%–65.36%in the 0–40 cm soil depth.The LFOC and KMnO4-C were proved to be the most sensitive fractions to different corn straw returning modes.Compared with CK,soils amended with corn straw increased mean weight diameter by 24.24%–40.48%in the 0–20 cm soil depth.The NTS and MTS preserved more than 60.00%of OC in macro-aggregates compared with CK.No significant difference was found in corn yield across all corn straw returning modes throughout the study period,indicating that adoption of NTS and MTS would increase SOC content and improve soil structure,and would not decline crop production. 展开更多
关键词 aggregate-size distribution corn straw return corn yield labile soil organic carbon fractions Haplic Cambisol
下载PDF
Salinity effects on soil organic carbon and its labile fractions,and nematode communities in irrigated farmlands in an arid region,northwestern China 被引量:4
11
作者 YongZhong Su TingNa Liu +1 位作者 XueFen Wang Rong Yang 《Research in Cold and Arid Regions》 CSCD 2016年第1期46-53,共8页
The effects of salinity on soil organic carbon (SOC) and its labile fractions including microbial biomass carbon (MBC) and easily oxidation organic carbon (EOC), basal soil respiration, and soil nematode communi... The effects of salinity on soil organic carbon (SOC) and its labile fractions including microbial biomass carbon (MBC) and easily oxidation organic carbon (EOC), basal soil respiration, and soil nematode community in the Fluvents, an oasis in an arid region of northwestern China were investigated. Five sites were selected which had a salinity gradient with different groundwater table from 1.0 m to 4.0 m. Soils were sampled at the 0~0 cm plough layer from 25 irrigated fields of five sites and electrical conductivity was measured in the saturation paste extracts (ECe). Soils were categorized into five salinity levels: (1) non-saline, (2) very slightly saline, (3) slightly saline, (4) moderately saline, and (5) strongly saline according to the values of ECe. The results show that SOC and total nitrogen concentration, cation exchange capacity (CEC), and the concentrations of labile organic fractions (MBC, EOC), and basal soil respiration decreased significantly with increasing ECe. The relationships between ECe and MBC, EOC and basal soil respiration were best described by power functions. Slight and moderate salinity had no significant impact on soil nematode abundance, but excessive salt accumulation led to a marked decline in soil nematode community diversity and abundance. Soil salinity changed soil nematode trophic groups and bacterivores were the most abundant trophic groups in salt-affected soils. Further study is necessary to identify the response of soil microbial processes and nematode community dynamics to soil salinity. 展开更多
关键词 SALINITY soil organic carbon labile organic carbon basal soil respiration soil nematode
下载PDF
Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols 被引量:8
12
作者 SUI Yueyu JIAO Xiaoguang +3 位作者 CHEN Wenting LIU Xiaobing ZHANG Xingyi DING Guangwei 《Chinese Geographical Science》 SCIE CSCD 2013年第6期692-699,共8页
Labile organic carbon (LOC) is a fraction of soil organic carbon (SOC) with rapid turnover time and is affected by soil fertilization. This investigation characterized the SOC content, LOC content and LOC distribu... Labile organic carbon (LOC) is a fraction of soil organic carbon (SOC) with rapid turnover time and is affected by soil fertilization. This investigation characterized the SOC content, LOC content and LOC distribution in the treatment plots of surface soil erosion at five levels (0-, 5-, 10-, 20- and 30-cm erosion). The soil had received contrasting fertilizer treatments (i.e., chemical fertilizer or chemical fertilizer + manure) for 6 years. This study demonstrated that both SOC and various LOC fractions contents were higher in the plots with fertilizer + manure than in those with fertilizer alone under the same erosion conditions. The SOC and LOC contents de- creased as the erosion depth increased. Light fraction organic carbon, particulate organic carbon, easily oxidizable organic carbon (KMnO4-oxydizable organic carbon), and microbial biomass carbon were 27% 57%, 37%-7%, 20%-25%, and 29%-33% higher respectively in the fertilizer + manure plots, than in the fertilizer alone plots. Positive correlations (p 〈 0.05) between SOC content and different fractions contents were observed in all plots except the correlation between total SOC content and water-soluble organic carbon content in the different fertilization treatments. Obviously, fertilizer + manure treatments would be conducive to the accumulation of LOC and SOC in the Black soil of Northeast China. 展开更多
关键词 erosion depth black soil farmland soil labile organic carbon distribution pattern long-term fertilization
下载PDF
Fertilization Affects Biomass Production of Suaeda salsa and Soil Organic Carbon Pool in East Coastal Region of China 被引量:5
13
作者 MENG Qing-feng YANG Jing-song +2 位作者 YAO Rong-jiang LIU Guang-ming YU Shi-peng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第9期1659-1672,共14页
Land use practice significantly affects soil properties. Soil is a major sink for atmospheric carbon, and soil organic carbon (SOC) is considered as an essential indicator of soil quality. The objective of this stud... Land use practice significantly affects soil properties. Soil is a major sink for atmospheric carbon, and soil organic carbon (SOC) is considered as an essential indicator of soil quality. The objective of this study was to assess the effects of N and P applied to Suaeda salsa on biomass production, SOC concentration, labile organic carbon (LOC) concentration, SOC pool and carbon management index (CMI) as well as the effect of the land use practice on soil quality of coastal tidal lands in east coastal region of China. The study provided relevant references for coastal exploitation, tidal land management and related study in other countries and regions. The field experiment was laid out in a randomized complete block design, consisting of four N-fertilization rates (0 (NO), 60 (N1), 120 (N2) and 180 kg ha-1 (N3)), three P-fertilization rates (0 (P0), 70 (P1) and 105 kg ha-~ (P2)) and bare land without vegetation. N and P applied to S. salsa on coastal tidal lands significantly affected biomass production (above-ground biomass and roots), bulk density (Pb), available N and P, SOC, LOC, SOC pool and CMI. Using statistical analysis, significantly interactions in N and P were observed for biomass production and the dominant factor for S. salsa production was N in continuous 2-yr experiments. There were no significant interactions between N and P for SOC concentration, LOC concentration and SOC pool. However, significant interaction was obtained for CMI at the 0-20 cm depth and N played a dominant role in the variation of CMI. There were significant improvements for soil measured attributes and parameters, which suggested that increasing the rates of N and P significantly decreased Pb at the 0-20 cm depth and increased available N and P, SOC, LOC, SOC pool as well as CMI at both the 0-20 and 20-40 cm depth, respectively. By correlation analysis, there were significantly positive correlations between biomass (above- ground biomass and roots) and SOC as well as LOC in 2010 and 2011 across all soil depth, respectively. The treatment with N at 180 kg ha-~ and P at 105 kg ha-1 was superior to the other treatments. The results from the 2-yr continuous experiments indicated that, in short-term, there were a few accumulation of SOC and LOC concentrations by means of N and P application to S. salsa, whereas in the long run, S. salsa with N and P application was recommended for coastal tidal lands because of its great potential of carbon sequestration, improvements of soil nutrition status and promotion of soil quality. 展开更多
关键词 Suaeda salsa production coastal tidal lands N and P application soil organic carbon labile organic carbon carbon management index
下载PDF
Organic mulching promotes soil organic carbon accumulation to deep soil layer in an urban plantation forest 被引量:3
14
作者 Xiaodan Sun Gang Wang +4 位作者 Qingxu Ma Jiahui Liao Dong Wang Qingwei Guan Davey L.Jones 《Forest Ecosystems》 SCIE CSCD 2021年第1期11-21,共11页
Background:Soil organic carbon(SOC)is important for soil quality and fertility in forest ecosystems.Labile SOC fractions are sensitive to environmental changes,which reflect the impact of short-term internal and exter... Background:Soil organic carbon(SOC)is important for soil quality and fertility in forest ecosystems.Labile SOC fractions are sensitive to environmental changes,which reflect the impact of short-term internal and external management measures on the soil carbon pool.Organic mulching(OM)alters the soil environment and promotes plant growth.However,little is known about the responses of SOC fractions in rhizosphere or bulk soil to OM in urban forests and its correlation with carbon composition in plants.Methods:A one-year field experiment with four treatments(OM at 0,5,10,and 20 cm thicknesses)was conducted in a 15-year-old Ligustrum lucidum plantation.Changes in the SOC fractions in the rhizosphere and bulk soil;the carbon content in the plant fine roots,leaves,and organic mulch;and several soil physicochemical properties were measured.The relationships between SOC fractions and the measured variables were analysed.Results:The OM treatments had no significant effect on the SOC fractions,except for the dissolved organic carbon(DOC).OM promoted the movement of SOC to deeper soil because of the increased carbon content in fine roots of subsoil.There were significant correlations between DOC and microbial biomass carbon and SOC and easily oxidised organic carbon.The OM had a greater effect on organic carbon fractions in the bulk soil than in the rhizosphere.The thinnest(5 cm)mulching layers showed the most rapid carbon decomposition over time.The time after OM had the greatest effect on the SOC fractions,followed by soil layer.Conclusions:The frequent addition of small amounts of organic mulch increased SOC accumulation in the present study.OM is a potential management model to enhance soil organic matter storage for maintaining urban forest productivity. 展开更多
关键词 Soil organic carbon labile organic carbon fractions RHIZOSPHERE Urban plantation forest Organic mulching
下载PDF
Composition and mineralization of soil organic carbon pools in four single-tree species forest soils 被引量:4
15
作者 Qingkui Wang Micai Zhong 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第6期1277-1285,共9页
Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To un... Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To understand the effect of tree species on soil C cycling, we assessed total, labile, and recalcitrant SOC pools, SOC chemical composition by 13C nuclear magnetic resonance spectroscopy, and SOC mineralization in four monoculture plantations. Labile and recalcitrant SOC pools in surface (0-10 cm) and deep (40-60 cm) soils in the four forests contained similar content. In contrast, these SOC pools exhibited differences in the subsurface soil (from 10 to 20 cm and from 20 to 40 cm). The alkyl C and O-alkyl C intensities of SOC were higher in Schima superba and Michelia macclurei forests than in Cunninghamia lanceolata and Pinus massoniana forests. In surface soil, S. superba and M. macclurei forests exhibited higher SOC mineralization rates than did P. massoniana and C.lanceolata forests. The slope of the straight line between C60 and labile SOC was steeper than that between C60 and total SOC. Our results suggest that roots affected the composition of SOC pools. Labile SOC pools also affected SOC mineralization to a greater extent than total SOC pools. 展开更多
关键词 ^13C nuclear magnetic resonance labile soil organic carbon Monoculture plantation Soil organic carbon mineralization Tree species
下载PDF
Effect of fire intensity on active organic and total soil carbon in a Larix gmelinii forest in the Daxing'anling Mountains,Northeastern China 被引量:3
16
作者 Yunmin Wei Haiqing Hu +3 位作者 Jiabao Sun Qiang Yuan Long Sun Huifeng Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第6期1351-1359,共9页
Studying contents and seasonal dynamics of active organic carbon in the soil is an important method for revealing the turnover and regulation mechanism of soil carbon pool. Through 3 years of field sampling and lab an... Studying contents and seasonal dynamics of active organic carbon in the soil is an important method for revealing the turnover and regulation mechanism of soil carbon pool. Through 3 years of field sampling and lab analysis, we studied the seasonal variations, content differences, and interrelationships of total organic carbon (TOC), light fraction organic carbon (LFOC), and particulate organic carbon (POC) of the soil in the forest areas burned with different fire intensities in the Daxing'anling Mountains. The mean TOC content in the low-intensity burned area was greater than that in the unburned area, moderate-intensity, and high-intensity burned areas in June and November (P 〈 0.05). LFOC and POC in the low-intensity burned area were greater than that in either moderate-intensity or high-intensity burned areas, with significant differences in LFOC in September and November (P 〈 0.05). A significant difference in LFOC between the unburned and burned areas was only found in July (P 〈 0.05). However, the differences in POC between the unburned and burned areas were not significant in all the whole seasons (P 〉 0.05). Soil LFOC and POC varied significantly with the seasons (P 〈 0.05) in the Daxing'anling Mountains. Significant linear relationships were observed between soil TOC, LFOC, and POC, which were positively correlated with soil nitrogen and negatively correlated with soil temperature in the Daxing'anling Mountains. 展开更多
关键词 Forest fire intensity labile organic carbon.Light fraction organic carbon Particulate organic matter carbon Total organic carbon
下载PDF
Land use effects on soil organic carbon, nitrogen and salinity in saline-alkaline wetland 被引量:6
17
作者 WenJie Liu YongZhong Su Rong Yang XueFengWang XiaoYang 《Research in Cold and Arid Regions》 2010年第3期263-270,共8页
Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fr... Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fractions C, nitrogen (N) and salinity in saline-alkaline wetlands in the middle reaches of the Heihe River Basin. Three land-use types were selected: intact saline-alkaline meadow wetland, artificial shrubbery (planting Tamarix) and farmland (cultivated for 18 years) of soils previously under meadow wetland. SOC, easily oxidized carbon, microbial biomass carbon, total N, NO3--N and salinity concentrations were measured. The results show that SOC and labile fraction carbon contents decreased significantly with increasing soil depth in the three land-use wetlands. The labile fraction carbon contents in the topsoil (0-20cm) in cultivated soils were significantly higher than that in intact meadow wetland and artificial shrubbery soil. The aboveground biomass and soil permeability were the primary influencing factors on the contents of SOC and the labile carbon in the intact meadow wetland and artificial shrubbery soil, however, the farming practice was a factor in cultivated soil. Agricultural measures can effectively reduce the salinity contents; however, it caused a significant increase of NO 3--N concentrations which posed a threat to groundwater quality in the study area. 展开更多
关键词 labile fraction carbon easily oxidized carbon microbial biomass carbon salinity nitrate-nitrogen saline-alkaline wetland
下载PDF
Soil organic carbon pool along different altitudinal level in the Sygera Mountains, Tibetan Plateau 被引量:6
18
作者 MA He-ping YANG Xiao-lin +2 位作者 GUO Qi-qiang ZHANG Xin-jun ZHOU Chen-ni 《Journal of Mountain Science》 SCIE CSCD 2016年第3期476-483,共8页
Labile organic carbon(LOC) is one of the most important indicators of soil organic matter quality and dynamics elevation and plays important function in the Tibetan Plateau climate. However, it is unknown what the s... Labile organic carbon(LOC) is one of the most important indicators of soil organic matter quality and dynamics elevation and plays important function in the Tibetan Plateau climate. However, it is unknown what the sources and causes of LOC contamination are. In this study, soil organic carbon(SOC), total nitrogen(TN), microbial biomass carbon(MBC), microbial biomass nitrogen(MBN) and LOC were analyzed based on different soil horizons and elevations using turnover time in an experimental site(3700 m to 4300 m area) in Sygera. SOC and LOC in higher-elevation vegetation types were higher than that of in lower-elevation vegetation types. Our results presented that the soil microbial biomass carbon(SMBC) and soil microbial biomass nitrogen(SMBN)were positively correlated with SOC. The content of easily oxidized carbon(EOC), particulate organic carbon(POC) and light fraction organic carbon(LFOC) decreased with depth increasing and the content were the lowest in the 60 cm to 100 cm depth.The total SOC, ROC and POC contents decreased with increasing soil horizons. The SOC, TN, MBC and MBN contents increased with increasing altitude in the Sygera Mountains. The MBC and MBN contents weredifferent with the changes of SOC(p&lt;0.05),meanwhile, both LFOC and POC were related to total SOC(p&lt;0.05). The physical and chemical properties of soil, including temperature, humidity, and altitude,were involved in the regulation of SOC, TN, MBC,MBN and LFOC contents in the Sygera Mountains,Tibetan Plateau. 展开更多
关键词 labile soil organic Easily oxidized carbon KMn O_4 Light fraction organic carbon Particulate organic carbon
下载PDF
Straw addition increases enzyme activities and microbial carbon metabolism activities in bauxite residue 被引量:1
19
作者 Hao Wu Wei Sun +4 位作者 Feng Zhu Yifan Jiang Shiwei Huang Johnvie Goloran Shengguo Xue 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
Recovery of microbial functions is one of the critical processes in the nutrient cycling of bauxite residue for improving revegetation.Straw is considered to be effective to increase microbial diversity and drive the ... Recovery of microbial functions is one of the critical processes in the nutrient cycling of bauxite residue for improving revegetation.Straw is considered to be effective to increase microbial diversity and drive the development of the microbial community,but its effect on microbial carbon metabolism has not been illustrated.The present study evaluated the effects of phosphogypsum(PG),straw(SF)and phosphogypsum plus straw(PGSF)on physicochemical properties,enzyme activities,and microbial carbon metabolism activities in bauxite residue.After 180 days incubation,PG,SF and PGSF treatment significantly reduced the residue pH from 10.85 to 8.64,9.39 and 8.06,respectively.Compared to CK treatment,SF treatment significantly increased the content of total organic carbon(TOC)and organic carbon fractions(DOC,MBC,EOC,and POC).In addition,straw addition significantly increased glucosidase,cellulose,urease,and alkaline phosphatase by 7.2-9.1 times,5.8-7.1 times,11.1-12.5 times,and 1.1-2.2 times,respectively.The Biolog results showed that straw addition significantly increased microbial metabolic activity(AWCD)and diversity in bauxite residue.Redundancy analysis indicated total nitrogen(TN)and carbon fractions(POC,MBC and DOC)were the most important environmental factors affecting microbial metabolic activity and diversity in bauxite residue.These findings provided us with a biogeochemical perspective to reveal soil formation in bauxite residue and suggested that nutrient supplement and regulation of salinity-alkalinity benefit the establishment of microbial communities and functions in bauxite residue. 展开更多
关键词 Bauxite residue labile organic carbon fractions Enzyme activities Community-level physiological profiles Soil formation in bauxite residue
原文传递
Variation of Soil Labile Organic Carbon Pools along an Elevational Gradient in the Wuyi Mountains,China 被引量:5
20
作者 徐侠 程晓莉 +3 位作者 周焱 骆亦其 阮宏华 汪家社 《Journal of Resources and Ecology》 CSCD 2010年第4期368-374,共7页
土壤活性有机碳(LOC)是一组活跃的化学物质,由于其较短的周转时间和对环境变化的敏感性在全球碳循环中发挥着重要的作用。但是,对活性有机碳在亚热带森林沿海拔梯度的空间变异还缺乏了解。在本研究中,我们测定了福建武夷山自然保护区不... 土壤活性有机碳(LOC)是一组活跃的化学物质,由于其较短的周转时间和对环境变化的敏感性在全球碳循环中发挥着重要的作用。但是,对活性有机碳在亚热带森林沿海拔梯度的空间变异还缺乏了解。在本研究中,我们测定了福建武夷山自然保护区不同海拔高度具有代表性的中亚热带常绿阔叶林(500 m)、针叶林(1150 m)、亚高山矮林(1750 m)以及高山草甸(2150 m)土壤不同土层(0-10,10-25和25-40 cm)中微生物可利用碳(MAC)、微生物量碳(MBC)、易氧化碳(ROC)、水溶性碳(WSOC)和轻组碳(LFC),并观测了相应的植物凋落物质量(LM),土壤温度和湿度。结果表明:沿海拔梯度的植被变化和土层深度变化对土壤活性有机碳有显著的影响。微生物可利用碳、微生物量碳、易氧化碳和水溶性碳在不同土层均沿海拔高度的增加而显著增加;而低海拔的常绿阔叶林和针叶林中轻组碳的含量高于亚高山矮林和高山草甸的轻组碳的含量。各土壤活性有机碳库均随土层的加深而减小。除轻组碳外,各碳库间存在着极显著的正相关(p【0.001)。轻组碳分别在低海拔(常绿阔叶林和针叶林)和高海拔(亚高山矮林和高山草甸)与各碳库显著相关。 展开更多
关键词 soil organic carbon labile organic carbon fractionation methods soil depth elevational gradient(vegetations)
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部