Glaciers in the Himalaya are often heavily covered with supraglacial debris,making them difficult to study with remotely-sensed imagery alone.Various methods such as band ratios can be used effectively to map clean-ic...Glaciers in the Himalaya are often heavily covered with supraglacial debris,making them difficult to study with remotely-sensed imagery alone.Various methods such as band ratios can be used effectively to map clean-ice glaciers;however,a thicker layer of debris often makes it impossible to distinguish between supraglacial debris and the surrounding terrain.Previously,a morphometric mapping approach employing an ASTER-derived digital elevation model has been used to map glaciers in the Khumbu Himal and the Tien Shan.This study on glaciers in the Greater Himalaya Range in Zanskar,southern Ladakh,aims (i) to use the morphometric approach to map large debris-covered glaciers;and (ii) to use Landsat and ASTER data and GPS and field measurements to document glacier change over the past four decades.Field work was carried out in the summers of 2008.For clean ice,band ratios from the ASTER dataset were used to distinguish glacial features.For debris-covered glaciers,topographic features such as slope were combined with thermal imagery and supervised classifiers to map glacial margins.The method is promising for large glaciers,although problems occurred in the distal and lateral parts and in the fore field of the glaciers.A multi-temporal analysis of glaciers in Zanskar showed that in general they have receded since at least the mid-to late-1970s.However,some few glaciers that advanced or oscillated - probably because of specific local environmental conditions - do exist.展开更多
The Nubra valley nestled in the Karakorum Mountains of Ladakh houses about 600 glaciers of various dimensions out of which 114 glaciers were monitored in the first phase of study. The study of 114 glaciers suggests th...The Nubra valley nestled in the Karakorum Mountains of Ladakh houses about 600 glaciers of various dimensions out of which 114 glaciers were monitored in the first phase of study. The study of 114 glaciers suggests that small-sized glaciers outnumber the large-sized glaciers. Almost 52.6% of the studied glaciers are of the size less than 5 km and 31.5% of the total glaciers are between the size of 5 and 10 km. The 84 glaciers out of the 114 glaciers have been monitored on shortterm basis between the time period 1989 and 2001 whereas 30 glaciers have been monitored on long-term basis between 1969 and 2001. The monitoring of the glaciers is based on the study of Survey of India topographical sheets of 1969 and satellite imageries of time series between 1989 and 2001. The monitoring of thirty glaciers shows that 17 glaciers have lost their area between 1969 and 2001. The loss in area is from 2150 km2 in 1969 to 2026 km2 in 2001. The study of eighty- four glaciers on short-term basis between 1989 and 2001 suggests that 26 glaciers have retreated, 25 glaciers have advanced and 33 glaciers show no change during the time period. The changes in the glaciers of Nubra valley are varied and complex.展开更多
Compression movements generated by continental collision apart from leading to uplift of the intervening ocean sediments brings about closure of the oceanic body in a phased manner.In the culminating phase of uplift w...Compression movements generated by continental collision apart from leading to uplift of the intervening ocean sediments brings about closure of the oceanic body in a phased manner.In the culminating phase of uplift when ocean sediments assume the form of a gigantic mountain system, a number of depressions or closed basins of various dimensions are developed in the orogenic belt. These depressions are principally developed by the differential folding of rocks coupled with faulting and thrusting associated with the uplift process.The mountain drainage gets impounded in these depressions and gives rise to the formation of lakes..During cold climate the depressions are also developed by glacial abrasion wh ich are subsequently filled by snowmelt to form the lakes of various dimensions.Himalaya is dotted with a number of lakes of both tectonic and glacial origin and signify the crown stage of tectonic development of the World’s tallest and youngest mountain belt.A number of lake basins have developed in the various longitudinal belts of this mountain system. Several lake basins like Tso Morari, Pangong Tso and Tso Kar have developed in close proximity of the Indus Suture zone (ISZ),the tectonic belt which marks the zone of continental collision between India and Asia.These lakes by virtue of their location, size, sediment content, water chemistry and associated geomorphic features are the potential source of information in regard to climo\|tectonic changes witnessed by Himalaya\|Tibet region in late Cenozoic period. The paper attempts at elucidating these changes that have occurred in Ladakh Trans Himalaya citing the illustration of the Tso Kar lake.展开更多
Whole rock major and trace element compositions of seven eclogites from the Tso Morari ultra-high pressure(UHP) complex, Ladakh were determined with the aim of constraining the protolith origins of the subducted crust...Whole rock major and trace element compositions of seven eclogites from the Tso Morari ultra-high pressure(UHP) complex, Ladakh were determined with the aim of constraining the protolith origins of the subducted crust. The eclogites have major element compositions corresponding to sub-alkaline basalts. Trace element characteristics of the samples show enrichment in LILE's over HFSEs(Rb, Th, K except Ba) with LREE enrichments((La/Lu)n = 1.28-5.96). Absence of Eu anomaly on the Primitive Mantle normalized diagram suggests the absence of plagioclase fractionation. Positive correlation between Mg# with Ni and Cr suggests olivine fractionation of mantle melts. Narrow range of(La/Yb)n(2.1-9.4) and Ce/Yb(6.2-16.2) along with Ti/Y(435-735) ratios calculated for the Tso Morari samples is consistent with generation of melts by partial melting of a garnet free mantle source within the spinel peridotite field. Ternary diagrams(viz. Ti-Zr-Y and Nb-Zr-Y) using immobile and incompatible elements show that the samples range from depleted to enriched and span from within plate basalts(WPB)to enriched MORB(E-MORB) indicating that the eclogite protoliths originated from basaltic magmas.Primitive Mantle normalized multi element plots showing significant Th and LREE enrichment marked by negative Nb anomalies are characteristic of continental flood basalts. Positive Pb, negative Nb, high Th/Ta, a narrow range of Nb/La and the observed wide variation for Ti/Y indicate that the Tso Morari samples have undergone some level of crustal contamination. Observed geochemical characteristics of the Tso Morari samples indicate tholeiitic compositions originated from enriched MORB(E-MORB) type magmas which underwent a limited magmatic evolution through the process of fractional crystallization and probably more by crustal contamination. Observed geochemical similarities(viz. Zr, Nb, La/Yb, La/Gd,La/Nb, Th/Ta ratios and REE) between Tso Morari eclogites and the Group I Panjal Traps make the trap basalt the most likely protoliths for the Tso Morari eclogites.展开更多
Ladakh is a critical area in a determination of the nature of Himalayan glaciation as it lies north of the arid area of Zanskar, where the glacial extent was limited through much of the Late Pleistocene, and south of ...Ladakh is a critical area in a determination of the nature of Himalayan glaciation as it lies north of the arid area of Zanskar, where the glacial extent was limited through much of the Late Pleistocene, and south of the Karakoram Range which remains the most heavily glaciated area outside the polar areas and was a centre of extensive glaciation during the Pleistocene.This variation in glacial style and extent across the Himalaya may reflect the interplay between monsoon driven south\|westerly air masses from the Indian Ocean and the westerly air masses from the Mediterranean/Black Sea areas. This paper reports on the first detailed geomorphological observations from within the Ladakh Range and demonstrates the former existence of large glaciers with a number of distinct limits to allow a first approximation of the glacial sequence. Samples for OSL age estimates are currently being processed to constrain a chronostratigraphy. No evidence has been observed for glaciation within the main Indus valley, but large (>80m high) moraine ridges indicate the former existence of glaciers entering from the southern tributary valleys of the Ladakh Range, descending to altitudes of c. 3500m.The Nimu glacier diverted the Indus southwards to erode a new valley with the abandonment of its former valley that can be traced westwards. In the tributary valley north of Leh, impressive termino\|lateral moraine ridges appear to lie on top of older weathered smaller moraine ridges, suggesting a more complex glacial sequence than previously reported.展开更多
The well preserved eclogitic rocks of the Tso Morari dome in eastern Ladakh, northwest Himalaya, provide information relevant to the exhumation of high pressure/low temperature rocks, and the early stage of the Himala...The well preserved eclogitic rocks of the Tso Morari dome in eastern Ladakh, northwest Himalaya, provide information relevant to the exhumation of high pressure/low temperature rocks, and the early stage of the Himalayan orogeny. The Tso Morari unit outcrops south of the Indus suture zone (Fig.1). The eclogitic dome is underlined on its eastern part by the Zildat normal fault where serpentinite lenses and partially hydrated peridotites are abundant. The close association of the high pressure rocks and serpentinites suggests a possible role of serpentinites in the exhumation of ultrahigh\|pressure rocks. To evaluate this possibility, geochemical analyses were carried out on the serpentinites closely associated with the Tso Morari eclogites.展开更多
The collision between and Indian and Asian plate has not only give rise to some of the highest mountains of the world but also is responsible for the various global phenomena associated with paleoclimate and paleo\|oc...The collision between and Indian and Asian plate has not only give rise to some of the highest mountains of the world but also is responsible for the various global phenomena associated with paleoclimate and paleo\|oceanography.Various indirect approaches have been employed in order to constrain the age of initiation of this collision (Beck et al 1995,D.B.Rowley 1996,Dewey 1989).Still it is being quoted anywhere between ca.60 to 40Ma in the literature.The main reason for the poor constraints on the age of the initiation of the collision is unavailability of a direct method to date this.In this paper we present the Ar\|Ar ages of the ophiolites from the Indus Suture,Ladakh and discuss the scope of this approach in constraining the age of the collision more narrowly.1\ Samples and methodology\;Several ophiolitic melange occurrences have been reported belonging to the Indus Suture in the Ladakh sector.These are characterized by the typical oceanic floor assemblages like chert,limestone etc mixed with the peridotites,serpentinites,dolerites,basalts,and pillow lavas (K.K.Sharma 1990).We present here the 40 Ar\| 39 Ar age spectra of two volcanics from the Sumdo Nala section of central Ladakh and one pillow lava from Chiktan,which is about 100km west of the Sumdo Nala.These samples were analysed using Ar\|Ar step heating method following the procedures described by Venketesan et al.1993.展开更多
Introduction\;A suture zone in an orogenic belt marks the paleo\|plate boundaries with its characteristic ocean floor assemblages. In Himalayas, the best and most spectacular example of the continent\|continent collis...Introduction\;A suture zone in an orogenic belt marks the paleo\|plate boundaries with its characteristic ocean floor assemblages. In Himalayas, the best and most spectacular example of the continent\|continent collision orogeny, the suture zone can be traced all along the 2500km long mountain chain and marks the boundary between the Indian and Asian plates. Ladakh region of North\|West Himalaya probably presents the best preserved history of pre\|, syn\|, and post\|collision signatures. It has rocks ranging from Precambrian passive margin sediments to the post collision molasses. The suture zone in Ladakh, referred to as the Indus Suture Zone (ISZ), is characterized by the several occurrences of ophiolitic melange. (M.P. Searle et al, 1987) .Apart from these, various linear belts of the volcanic rocks have been found in the Indus Suture Zone, though their inter relationship is not very clear (K.K.Sharma 1990).展开更多
The Ladakh batholith is exposed along the 600km long and 20 to 80km wide NW—SE trending Ladakh range north of the Indus\|Tsangpo Suture Zone. It was emplaced into an unmetamorphosed thick pile of mafic and felsic vol...The Ladakh batholith is exposed along the 600km long and 20 to 80km wide NW—SE trending Ladakh range north of the Indus\|Tsangpo Suture Zone. It was emplaced into an unmetamorphosed thick pile of mafic and felsic volcanics, ultramafics and sediments of Upper Cretaceous\|Eocene age (Dras Volcanics, Khardung Volcanics). The granites from the Ladakh batholith within the Leh\|Khardung La and Sakti—Chang La sections (samples collected between altitude of 3600m and 5440m above mean sea level, Fig.1) have been estimated for pressure and temperature of crystallization employing the hornblende geobarometer of Schmidt (1992) and hornblende\|plagioclase geothermometer of Blundy and Holland (1990), with the results of pressure of (250±60)MPa and temperature of (695±22)℃. Therefore, these granites were solidified at a depth of (8 6±2)km suggesting an unroofing of this thickness in this region. The importance of this geobarometric data in conjunction with age data on the cooling and unroofing history of the Trans\|Himalayan Ladakh batholith and geodynamic implications of the India—Asia collision are discussed.展开更多
Present study reports the PGE-geochemistry of mantle peridotites and Nd-isotope geochemistry of arc related mafic rocks from the Indus Suture Zone(ISZ),western Ladakh.The total PGE concentration of the Shergol and Sur...Present study reports the PGE-geochemistry of mantle peridotites and Nd-isotope geochemistry of arc related mafic rocks from the Indus Suture Zone(ISZ),western Ladakh.The total PGE concentration of the Shergol and Suru Valley peridotites(∑PGE=96-180 ppb)is much higher than that of the primitive mantle and global ophiolitic mantle peridotites.The studied peridotites show concave upward PGE-distribution patterns with higher palladium-group PGE/Iridium-group PGE ratios(i.e.,0.8-2.9)suggesting that the partial melting is not the sole factor responsible for the evolution of these peridotites.The observed PGE-distribution patterns are distinct from residual/refractory mantle peridotites,which have concave downward or flat PGE-distribution patterns.Relative enrichment of palladium-group PGE as well as other whole-rock incompatible elements(e.g.,LILE and LREE)and higher Pd/Ir ratio(1.1-5.9)reflects that these peridotites have experienced fluid/melt interaction in a supra-subduction zone(SSZ)tectonic setting.Also,the Shergol mafic intrusives and Dras mafic volcanics,associated with the studied peridotites,have high^(143)Nd/^(144)Nd ratios(i.e.,0.512908-0.513078 and 0.512901-0.512977,respectively)and positiveε_(Nd)(t)(calculated for t=140 Ma)values(i.e.,+5.3 to+8.6 and+5.1 to+6.6,respectively),indicating derivation from depleted mantle sources within an intra-oceanic arc setting,similar to Spongtang and Nidar ophiolites from other parts of Ladakh Himalaya.The transition from SSZ-type Shergol and Suru Valley peridotites to Early Cretaceous tholeiitic Shergol mafic intrusives followed by tholeiitic to calc-alkaline Dras mafic volcanics within the Neo-Tethys Ocean exhibit characteristics of subduction initiation mechanism analogous to the Izu-Bonin-Mariana arc system within western Pacific.展开更多
The Spontang Ophiolite complex represents the most complete ophiolite sequence amongst the South Ladakh ophiolites and comprises mantle rocks(depleted harzburgites,dunites and minor lherzolites)as well as crustal rock...The Spontang Ophiolite complex represents the most complete ophiolite sequence amongst the South Ladakh ophiolites and comprises mantle rocks(depleted harzburgites,dunites and minor lherzolites)as well as crustal rocks(basalt,isotropic gabbros,layered gabbros etc.).In the present study,detailed geochemistry(whole rock as well as mineral chemistry)and Sr-Nd isotopic analyses of thirty-six ultramaficmafic samples have been attempted to constraint the evolution and petrogenetic history of the Tethyan oceanic crust.Major,trace-element and REE patterns of the peridotites and their minerals indicate that the lherzolites experienced lower degrees of partial melting resembling abyssal peridotites(at higher temperatures,TREE=$1216℃)than the harzburgites(6%–8%versus 15%–17%).Elevated eNd(t)and variable^(87) Sr/^(86) Sr(t)ratios along with REE patterns suggest that the Spontang mafic rocks display N-MORB affinity with negligible participation of oceanic sediments in their genesis are originated from a depleted upper mantle with little contribution from subduction-related fluids.MORB-type Neotethyan oceanic crust is associated with the earliest phase of subduction(of older Jurassic age)through which a younger intra-oceanic island arc(Spong arc)subsequently developed.Harzburgites REE display typical U-shaped patterns,suggesting that these rocks have been metasomatized by LREE-enriched fluids.On the other side,mafic rocks are characterized by heterogeneous(Nb/La)PMand(Hf/Sm)PMand relatively homogeneous eNd(t),indicating interaction of subduction-related melts with the upper mantle during the initiation of subduction,in Early Cretaceous times.展开更多
138 soil samples were collected from various loca-tions in Ladakh, a cold desert in the Himalayan region, India and the samples were screened for the presence of keratinophilic fungi using the hair baiting techniques....138 soil samples were collected from various loca-tions in Ladakh, a cold desert in the Himalayan region, India and the samples were screened for the presence of keratinophilic fungi using the hair baiting techniques. 58 isolates were recovered and identified. The cultures were identified based on their macro- and micro-morphological features. A total of six genera and fourteen species were isolated namely Amauroascus kuehnii (0.72%), Aphanoascus keratinophilus (4.34%), Aphanoascus terreus (2.17%), Auxarthron alboluteum (0.72%), Auxarthron conjugatum (0.72%), Chrysosporium articulatum (0.72%), Chrysosporium mephiticum (0.72%), Chrysosporium minutisporosum (2.17%), Chrysosporium siglerae (0.72%), Chrysosporium sp. (1.44%), Chrysosporium tropicum (15.94 %), Chrysosporium submersum (3.62%), Chrysosporium state of Ctenomyces serratus (6.52%) and Geomyces pannorum (1.45%). The present study shows that keratinophilic fungi exist in the cold desert of Ladakh.展开更多
Ladakh’s cropped and non-cropped areas suffer greatly from weedy invasion under subsistence agricultural system where weeding is not a priority but total crop + weed biomass together contribute to livestock feeding s...Ladakh’s cropped and non-cropped areas suffer greatly from weedy invasion under subsistence agricultural system where weeding is not a priority but total crop + weed biomass together contribute to livestock feeding significantly. As agriculture along with livestock rearing is major activity of livelihood options, thereby contributing significantly to Ladakh economy and income generation for supporting resource poor farmers. Amongst various invasive weed species, the common reed (Phragmites australis) has become a serious ecological threat for agri-silvi-pastoral system biodiversity and accelerated its expansion in cropped lands including many wetland and salt-affected habitats of cold arid region due to its intermediate plant growth habit of C3 - C4 photosynthetic ecotypes. This character makes Phragmites a climate-resilient species, which is a major challenge for cold arid agriculture in the changing climatic patterns. Simultaneously, it is one of the best fodder substitute available under harsh climate. This paper deals with its unique characters and potential threats to the agrobiodiversity of Ladakh.展开更多
Two taxa of Agaricaceae viz.,Cyathus colensoi and Cyathus renweii collected from Leh district of Ladakh were described and illustrated.Of these,C.renweii is a new report to India and C.colensoi is being reported for t...Two taxa of Agaricaceae viz.,Cyathus colensoi and Cyathus renweii collected from Leh district of Ladakh were described and illustrated.Of these,C.renweii is a new report to India and C.colensoi is being reported for the first time from Jammu and Kashmir.展开更多
Ten quantitative morphological characters were studied in 56 Morus alba L. trees representing three natural populations from the trans-Himalayan Ladakh region. The altitude of collection sites ranged from 2815 to 3177...Ten quantitative morphological characters were studied in 56 Morus alba L. trees representing three natural populations from the trans-Himalayan Ladakh region. The altitude of collection sites ranged from 2815 to 3177 m above the sea level(asl). Coefficient of variation(CV) showed high phenotypic variation in M. alba. Linear regression analysis revealed that leaf and fruit size decreases with an increase in altitude. High CV was observed for leaf length, leaf width, petiole length, leaf area, internodal distance, number of nodes, bud length, fruit length, fruit width and fruit weight. Similarly, a high phenotypic plasticity index was observed for bud length, leaf length, leaf width, petiole length, leaf area, inter-nodal distance, number of nodes, fruit length, fruit width and fruit weight. For every 100 m increase in altitude, leaf length, leaf width and leaf area decreased by 1 cm, 0.8 cm and 16.6 cm2, respectively. Analysis of covariance showed a predominant altitudinal effect on the morphological characters in comparison to the population effect. A small change in the altitude caused significant change in the plant morphological characteristics. The present investigation represents to our knowledge the first study addressing phenotypic variation in mulberryalong an altitudinal gradient.展开更多
基金the generosity of The University of Montana and the German Research Foundation (DFGBU 949/15-1)a research fellowship from the Alexander von Humboldt Foundation awarded to Ulrich Kamp
文摘Glaciers in the Himalaya are often heavily covered with supraglacial debris,making them difficult to study with remotely-sensed imagery alone.Various methods such as band ratios can be used effectively to map clean-ice glaciers;however,a thicker layer of debris often makes it impossible to distinguish between supraglacial debris and the surrounding terrain.Previously,a morphometric mapping approach employing an ASTER-derived digital elevation model has been used to map glaciers in the Khumbu Himal and the Tien Shan.This study on glaciers in the Greater Himalaya Range in Zanskar,southern Ladakh,aims (i) to use the morphometric approach to map large debris-covered glaciers;and (ii) to use Landsat and ASTER data and GPS and field measurements to document glacier change over the past four decades.Field work was carried out in the summers of 2008.For clean ice,band ratios from the ASTER dataset were used to distinguish glacial features.For debris-covered glaciers,topographic features such as slope were combined with thermal imagery and supervised classifiers to map glacial margins.The method is promising for large glaciers,although problems occurred in the distal and lateral parts and in the fore field of the glaciers.A multi-temporal analysis of glaciers in Zanskar showed that in general they have receded since at least the mid-to late-1970s.However,some few glaciers that advanced or oscillated - probably because of specific local environmental conditions - do exist.
文摘The Nubra valley nestled in the Karakorum Mountains of Ladakh houses about 600 glaciers of various dimensions out of which 114 glaciers were monitored in the first phase of study. The study of 114 glaciers suggests that small-sized glaciers outnumber the large-sized glaciers. Almost 52.6% of the studied glaciers are of the size less than 5 km and 31.5% of the total glaciers are between the size of 5 and 10 km. The 84 glaciers out of the 114 glaciers have been monitored on shortterm basis between the time period 1989 and 2001 whereas 30 glaciers have been monitored on long-term basis between 1969 and 2001. The monitoring of the glaciers is based on the study of Survey of India topographical sheets of 1969 and satellite imageries of time series between 1989 and 2001. The monitoring of thirty glaciers shows that 17 glaciers have lost their area between 1969 and 2001. The loss in area is from 2150 km2 in 1969 to 2026 km2 in 2001. The study of eighty- four glaciers on short-term basis between 1989 and 2001 suggests that 26 glaciers have retreated, 25 glaciers have advanced and 33 glaciers show no change during the time period. The changes in the glaciers of Nubra valley are varied and complex.
文摘Compression movements generated by continental collision apart from leading to uplift of the intervening ocean sediments brings about closure of the oceanic body in a phased manner.In the culminating phase of uplift when ocean sediments assume the form of a gigantic mountain system, a number of depressions or closed basins of various dimensions are developed in the orogenic belt. These depressions are principally developed by the differential folding of rocks coupled with faulting and thrusting associated with the uplift process.The mountain drainage gets impounded in these depressions and gives rise to the formation of lakes..During cold climate the depressions are also developed by glacial abrasion wh ich are subsequently filled by snowmelt to form the lakes of various dimensions.Himalaya is dotted with a number of lakes of both tectonic and glacial origin and signify the crown stage of tectonic development of the World’s tallest and youngest mountain belt.A number of lake basins have developed in the various longitudinal belts of this mountain system. Several lake basins like Tso Morari, Pangong Tso and Tso Kar have developed in close proximity of the Indus Suture zone (ISZ),the tectonic belt which marks the zone of continental collision between India and Asia.These lakes by virtue of their location, size, sediment content, water chemistry and associated geomorphic features are the potential source of information in regard to climo\|tectonic changes witnessed by Himalaya\|Tibet region in late Cenozoic period. The paper attempts at elucidating these changes that have occurred in Ladakh Trans Himalaya citing the illustration of the Tso Kar lake.
基金financial support received from CSIR, New Delhi by means of SRF (9/137/(0499)/2011-EMR-I)BCUD, Savitribai Phule Pune University, Pune for financial support received through BCUD research project grants
文摘Whole rock major and trace element compositions of seven eclogites from the Tso Morari ultra-high pressure(UHP) complex, Ladakh were determined with the aim of constraining the protolith origins of the subducted crust. The eclogites have major element compositions corresponding to sub-alkaline basalts. Trace element characteristics of the samples show enrichment in LILE's over HFSEs(Rb, Th, K except Ba) with LREE enrichments((La/Lu)n = 1.28-5.96). Absence of Eu anomaly on the Primitive Mantle normalized diagram suggests the absence of plagioclase fractionation. Positive correlation between Mg# with Ni and Cr suggests olivine fractionation of mantle melts. Narrow range of(La/Yb)n(2.1-9.4) and Ce/Yb(6.2-16.2) along with Ti/Y(435-735) ratios calculated for the Tso Morari samples is consistent with generation of melts by partial melting of a garnet free mantle source within the spinel peridotite field. Ternary diagrams(viz. Ti-Zr-Y and Nb-Zr-Y) using immobile and incompatible elements show that the samples range from depleted to enriched and span from within plate basalts(WPB)to enriched MORB(E-MORB) indicating that the eclogite protoliths originated from basaltic magmas.Primitive Mantle normalized multi element plots showing significant Th and LREE enrichment marked by negative Nb anomalies are characteristic of continental flood basalts. Positive Pb, negative Nb, high Th/Ta, a narrow range of Nb/La and the observed wide variation for Ti/Y indicate that the Tso Morari samples have undergone some level of crustal contamination. Observed geochemical characteristics of the Tso Morari samples indicate tholeiitic compositions originated from enriched MORB(E-MORB) type magmas which underwent a limited magmatic evolution through the process of fractional crystallization and probably more by crustal contamination. Observed geochemical similarities(viz. Zr, Nb, La/Yb, La/Gd,La/Nb, Th/Ta ratios and REE) between Tso Morari eclogites and the Group I Panjal Traps make the trap basalt the most likely protoliths for the Tso Morari eclogites.
文摘Ladakh is a critical area in a determination of the nature of Himalayan glaciation as it lies north of the arid area of Zanskar, where the glacial extent was limited through much of the Late Pleistocene, and south of the Karakoram Range which remains the most heavily glaciated area outside the polar areas and was a centre of extensive glaciation during the Pleistocene.This variation in glacial style and extent across the Himalaya may reflect the interplay between monsoon driven south\|westerly air masses from the Indian Ocean and the westerly air masses from the Mediterranean/Black Sea areas. This paper reports on the first detailed geomorphological observations from within the Ladakh Range and demonstrates the former existence of large glaciers with a number of distinct limits to allow a first approximation of the glacial sequence. Samples for OSL age estimates are currently being processed to constrain a chronostratigraphy. No evidence has been observed for glaciation within the main Indus valley, but large (>80m high) moraine ridges indicate the former existence of glaciers entering from the southern tributary valleys of the Ladakh Range, descending to altitudes of c. 3500m.The Nimu glacier diverted the Indus southwards to erode a new valley with the abandonment of its former valley that can be traced westwards. In the tributary valley north of Leh, impressive termino\|lateral moraine ridges appear to lie on top of older weathered smaller moraine ridges, suggesting a more complex glacial sequence than previously reported.
文摘The well preserved eclogitic rocks of the Tso Morari dome in eastern Ladakh, northwest Himalaya, provide information relevant to the exhumation of high pressure/low temperature rocks, and the early stage of the Himalayan orogeny. The Tso Morari unit outcrops south of the Indus suture zone (Fig.1). The eclogitic dome is underlined on its eastern part by the Zildat normal fault where serpentinite lenses and partially hydrated peridotites are abundant. The close association of the high pressure rocks and serpentinites suggests a possible role of serpentinites in the exhumation of ultrahigh\|pressure rocks. To evaluate this possibility, geochemical analyses were carried out on the serpentinites closely associated with the Tso Morari eclogites.
文摘The collision between and Indian and Asian plate has not only give rise to some of the highest mountains of the world but also is responsible for the various global phenomena associated with paleoclimate and paleo\|oceanography.Various indirect approaches have been employed in order to constrain the age of initiation of this collision (Beck et al 1995,D.B.Rowley 1996,Dewey 1989).Still it is being quoted anywhere between ca.60 to 40Ma in the literature.The main reason for the poor constraints on the age of the initiation of the collision is unavailability of a direct method to date this.In this paper we present the Ar\|Ar ages of the ophiolites from the Indus Suture,Ladakh and discuss the scope of this approach in constraining the age of the collision more narrowly.1\ Samples and methodology\;Several ophiolitic melange occurrences have been reported belonging to the Indus Suture in the Ladakh sector.These are characterized by the typical oceanic floor assemblages like chert,limestone etc mixed with the peridotites,serpentinites,dolerites,basalts,and pillow lavas (K.K.Sharma 1990).We present here the 40 Ar\| 39 Ar age spectra of two volcanics from the Sumdo Nala section of central Ladakh and one pillow lava from Chiktan,which is about 100km west of the Sumdo Nala.These samples were analysed using Ar\|Ar step heating method following the procedures described by Venketesan et al.1993.
文摘Introduction\;A suture zone in an orogenic belt marks the paleo\|plate boundaries with its characteristic ocean floor assemblages. In Himalayas, the best and most spectacular example of the continent\|continent collision orogeny, the suture zone can be traced all along the 2500km long mountain chain and marks the boundary between the Indian and Asian plates. Ladakh region of North\|West Himalaya probably presents the best preserved history of pre\|, syn\|, and post\|collision signatures. It has rocks ranging from Precambrian passive margin sediments to the post collision molasses. The suture zone in Ladakh, referred to as the Indus Suture Zone (ISZ), is characterized by the several occurrences of ophiolitic melange. (M.P. Searle et al, 1987) .Apart from these, various linear belts of the volcanic rocks have been found in the Indus Suture Zone, though their inter relationship is not very clear (K.K.Sharma 1990).
文摘The Ladakh batholith is exposed along the 600km long and 20 to 80km wide NW—SE trending Ladakh range north of the Indus\|Tsangpo Suture Zone. It was emplaced into an unmetamorphosed thick pile of mafic and felsic volcanics, ultramafics and sediments of Upper Cretaceous\|Eocene age (Dras Volcanics, Khardung Volcanics). The granites from the Ladakh batholith within the Leh\|Khardung La and Sakti—Chang La sections (samples collected between altitude of 3600m and 5440m above mean sea level, Fig.1) have been estimated for pressure and temperature of crystallization employing the hornblende geobarometer of Schmidt (1992) and hornblende\|plagioclase geothermometer of Blundy and Holland (1990), with the results of pressure of (250±60)MPa and temperature of (695±22)℃. Therefore, these granites were solidified at a depth of (8 6±2)km suggesting an unroofing of this thickness in this region. The importance of this geobarometric data in conjunction with age data on the cooling and unroofing history of the Trans\|Himalayan Ladakh batholith and geodynamic implications of the India—Asia collision are discussed.
基金Council of Scientific and Industrial Research(CSIR),New Delhi for providing financial assistance in the form of Senior Research Fellowship(CSIR-SRF)DST-SERB,New Delhi,for funding the EPMA National facility at Banaras Hindu University.
文摘Present study reports the PGE-geochemistry of mantle peridotites and Nd-isotope geochemistry of arc related mafic rocks from the Indus Suture Zone(ISZ),western Ladakh.The total PGE concentration of the Shergol and Suru Valley peridotites(∑PGE=96-180 ppb)is much higher than that of the primitive mantle and global ophiolitic mantle peridotites.The studied peridotites show concave upward PGE-distribution patterns with higher palladium-group PGE/Iridium-group PGE ratios(i.e.,0.8-2.9)suggesting that the partial melting is not the sole factor responsible for the evolution of these peridotites.The observed PGE-distribution patterns are distinct from residual/refractory mantle peridotites,which have concave downward or flat PGE-distribution patterns.Relative enrichment of palladium-group PGE as well as other whole-rock incompatible elements(e.g.,LILE and LREE)and higher Pd/Ir ratio(1.1-5.9)reflects that these peridotites have experienced fluid/melt interaction in a supra-subduction zone(SSZ)tectonic setting.Also,the Shergol mafic intrusives and Dras mafic volcanics,associated with the studied peridotites,have high^(143)Nd/^(144)Nd ratios(i.e.,0.512908-0.513078 and 0.512901-0.512977,respectively)and positiveε_(Nd)(t)(calculated for t=140 Ma)values(i.e.,+5.3 to+8.6 and+5.1 to+6.6,respectively),indicating derivation from depleted mantle sources within an intra-oceanic arc setting,similar to Spongtang and Nidar ophiolites from other parts of Ladakh Himalaya.The transition from SSZ-type Shergol and Suru Valley peridotites to Early Cretaceous tholeiitic Shergol mafic intrusives followed by tholeiitic to calc-alkaline Dras mafic volcanics within the Neo-Tethys Ocean exhibit characteristics of subduction initiation mechanism analogous to the Izu-Bonin-Mariana arc system within western Pacific.
基金financial support received from Science Education and Research Board(SERB)and Department of Science and Technology(DST)by way of its Young Scientist Scheme(Ref.No.SR/FTP/ES-2/2014)Women’s scientist scheme(Ref No.SR/WOS-A/EA-14/2017)S.Mounic and A.Marquet respectively from Toulouse TIMS and ICPMS facilities.RT acknowledges a"Juan de la Cierva-formación"Fellowship(FJC2018-036729)granted by the Spanish Ministry of Science and Innovation and co-funded by the European Development Fund and the European Social Fund。
文摘The Spontang Ophiolite complex represents the most complete ophiolite sequence amongst the South Ladakh ophiolites and comprises mantle rocks(depleted harzburgites,dunites and minor lherzolites)as well as crustal rocks(basalt,isotropic gabbros,layered gabbros etc.).In the present study,detailed geochemistry(whole rock as well as mineral chemistry)and Sr-Nd isotopic analyses of thirty-six ultramaficmafic samples have been attempted to constraint the evolution and petrogenetic history of the Tethyan oceanic crust.Major,trace-element and REE patterns of the peridotites and their minerals indicate that the lherzolites experienced lower degrees of partial melting resembling abyssal peridotites(at higher temperatures,TREE=$1216℃)than the harzburgites(6%–8%versus 15%–17%).Elevated eNd(t)and variable^(87) Sr/^(86) Sr(t)ratios along with REE patterns suggest that the Spontang mafic rocks display N-MORB affinity with negligible participation of oceanic sediments in their genesis are originated from a depleted upper mantle with little contribution from subduction-related fluids.MORB-type Neotethyan oceanic crust is associated with the earliest phase of subduction(of older Jurassic age)through which a younger intra-oceanic island arc(Spong arc)subsequently developed.Harzburgites REE display typical U-shaped patterns,suggesting that these rocks have been metasomatized by LREE-enriched fluids.On the other side,mafic rocks are characterized by heterogeneous(Nb/La)PMand(Hf/Sm)PMand relatively homogeneous eNd(t),indicating interaction of subduction-related melts with the upper mantle during the initiation of subduction,in Early Cretaceous times.
文摘138 soil samples were collected from various loca-tions in Ladakh, a cold desert in the Himalayan region, India and the samples were screened for the presence of keratinophilic fungi using the hair baiting techniques. 58 isolates were recovered and identified. The cultures were identified based on their macro- and micro-morphological features. A total of six genera and fourteen species were isolated namely Amauroascus kuehnii (0.72%), Aphanoascus keratinophilus (4.34%), Aphanoascus terreus (2.17%), Auxarthron alboluteum (0.72%), Auxarthron conjugatum (0.72%), Chrysosporium articulatum (0.72%), Chrysosporium mephiticum (0.72%), Chrysosporium minutisporosum (2.17%), Chrysosporium siglerae (0.72%), Chrysosporium sp. (1.44%), Chrysosporium tropicum (15.94 %), Chrysosporium submersum (3.62%), Chrysosporium state of Ctenomyces serratus (6.52%) and Geomyces pannorum (1.45%). The present study shows that keratinophilic fungi exist in the cold desert of Ladakh.
文摘Ladakh’s cropped and non-cropped areas suffer greatly from weedy invasion under subsistence agricultural system where weeding is not a priority but total crop + weed biomass together contribute to livestock feeding significantly. As agriculture along with livestock rearing is major activity of livelihood options, thereby contributing significantly to Ladakh economy and income generation for supporting resource poor farmers. Amongst various invasive weed species, the common reed (Phragmites australis) has become a serious ecological threat for agri-silvi-pastoral system biodiversity and accelerated its expansion in cropped lands including many wetland and salt-affected habitats of cold arid region due to its intermediate plant growth habit of C3 - C4 photosynthetic ecotypes. This character makes Phragmites a climate-resilient species, which is a major challenge for cold arid agriculture in the changing climatic patterns. Simultaneously, it is one of the best fodder substitute available under harsh climate. This paper deals with its unique characters and potential threats to the agrobiodiversity of Ladakh.
文摘Two taxa of Agaricaceae viz.,Cyathus colensoi and Cyathus renweii collected from Leh district of Ladakh were described and illustrated.Of these,C.renweii is a new report to India and C.colensoi is being reported for the first time from Jammu and Kashmir.
基金supported by Defence Research and Development Organization (DRDO),Ministry of Defence, Government of India
文摘Ten quantitative morphological characters were studied in 56 Morus alba L. trees representing three natural populations from the trans-Himalayan Ladakh region. The altitude of collection sites ranged from 2815 to 3177 m above the sea level(asl). Coefficient of variation(CV) showed high phenotypic variation in M. alba. Linear regression analysis revealed that leaf and fruit size decreases with an increase in altitude. High CV was observed for leaf length, leaf width, petiole length, leaf area, internodal distance, number of nodes, bud length, fruit length, fruit width and fruit weight. Similarly, a high phenotypic plasticity index was observed for bud length, leaf length, leaf width, petiole length, leaf area, inter-nodal distance, number of nodes, fruit length, fruit width and fruit weight. For every 100 m increase in altitude, leaf length, leaf width and leaf area decreased by 1 cm, 0.8 cm and 16.6 cm2, respectively. Analysis of covariance showed a predominant altitudinal effect on the morphological characters in comparison to the population effect. A small change in the altitude caused significant change in the plant morphological characteristics. The present investigation represents to our knowledge the first study addressing phenotypic variation in mulberryalong an altitudinal gradient.