The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent th...The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent thermal dissipation properties, as well as easy fabrication. A well-matched waveguide coupler is proposed for the structure. Combining the design of attenuators, a full-scale three-dimensional circuit model for the V-band coupled-cavity traveling- wave tube is constructed. The electromagnetic characteristics and the beam wave interaction of this structure are investigated. The beam current is set to be 100 mA, and the cathode voltage is tuned from 16.8 kV to 15.8 kV. The calculation results show that this tube can produce a saturated average output power over 100 W with an instantaneous bandwidth greater than 1.25 GHz in the frequency ranging from 58 GHz to 62 GHz. The corresponding gain and electronic efficiency can reach over 32 dB and 6.5%, respectively.展开更多
针对以往HART仪表FSK发送电路功耗大且电路复杂的问题,提出了一种新型的应用在HART仪表上的FSK信号发送电路.该电路采用一种新型频率合成算法,即阶梯波产生算法,用来产生连续相位的温度码,然后将温度码送入DAC输出FSK阶梯波.结果表明,...针对以往HART仪表FSK发送电路功耗大且电路复杂的问题,提出了一种新型的应用在HART仪表上的FSK信号发送电路.该电路采用一种新型频率合成算法,即阶梯波产生算法,用来产生连续相位的温度码,然后将温度码送入DAC输出FSK阶梯波.结果表明,该电路能够产生连续相位的FSK信号阶梯波,功耗为0. 14 mA,失真度为3%,信噪比为92 d B,频率误差为1‰.该电路与同类产品相比,不仅能够产生连续相位的FSK阶梯波,而且电路简单,具有较高的性能.展开更多
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61125103)the Vacuum Electronics National Lab Foundation, China (Grant No. 9140C050101110C0501)the Fundamental Research Funds for the Central Universities, China (Grant Nos. ZYGX2009Z003 and ZYGX2010J054)
文摘The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent thermal dissipation properties, as well as easy fabrication. A well-matched waveguide coupler is proposed for the structure. Combining the design of attenuators, a full-scale three-dimensional circuit model for the V-band coupled-cavity traveling- wave tube is constructed. The electromagnetic characteristics and the beam wave interaction of this structure are investigated. The beam current is set to be 100 mA, and the cathode voltage is tuned from 16.8 kV to 15.8 kV. The calculation results show that this tube can produce a saturated average output power over 100 W with an instantaneous bandwidth greater than 1.25 GHz in the frequency ranging from 58 GHz to 62 GHz. The corresponding gain and electronic efficiency can reach over 32 dB and 6.5%, respectively.
文摘针对以往HART仪表FSK发送电路功耗大且电路复杂的问题,提出了一种新型的应用在HART仪表上的FSK信号发送电路.该电路采用一种新型频率合成算法,即阶梯波产生算法,用来产生连续相位的温度码,然后将温度码送入DAC输出FSK阶梯波.结果表明,该电路能够产生连续相位的FSK信号阶梯波,功耗为0. 14 mA,失真度为3%,信噪比为92 d B,频率误差为1‰.该电路与同类产品相比,不仅能够产生连续相位的FSK阶梯波,而且电路简单,具有较高的性能.