The paper is devised to propose finite volume semi-Lagrange scheme for approximating linear and nonlinear hyperbolic conservation laws. Based on the idea of semi-Lagrangian scheme, we transform the integration of flux...The paper is devised to propose finite volume semi-Lagrange scheme for approximating linear and nonlinear hyperbolic conservation laws. Based on the idea of semi-Lagrangian scheme, we transform the integration of flux in time into the integration in space. Compared with the traditional semi-Lagrange scheme, the scheme devised here tries to directly evaluate the average fluxes along cell edges. It is this difference that makes the scheme in this paper simple to implement and easily extend to nonlinear cases. The procedure of evaluation of the average fluxes only depends on the high-order spatial interpolation. Hence the scheme can be implemented as long as the spatial interpolation is available, and no additional temporal discretization is needed. In this paper, the high-order spatial discretization is chosen to be the classical 5th-order weighted essentially non-oscillatory spatial interpolation. In the end, 1D and 2D numerical results show that this method is rather robust. In addition, to exhibit the numerical resolution and efficiency of the proposed scheme, the numerical solutions of the classical 5th-order WENO scheme combined with the 3rd-order Runge-Kutta temporal discretization (WENOJS) are chosen as the reference. We find that the scheme proposed in the paper generates comparable solutions with that of WENOJS, but with less CPU time.展开更多
Based on the high order essentially non-oscillatory(ENO)Lagrangian type scheme on quadrilateral meshes presented in our earlier work[3],in this paper we develop a third order conservative Lagrangian type scheme on cur...Based on the high order essentially non-oscillatory(ENO)Lagrangian type scheme on quadrilateral meshes presented in our earlier work[3],in this paper we develop a third order conservative Lagrangian type scheme on curvilinear meshes for solving the Euler equations of compressible gas dynamics.The main purpose of this work is to demonstrate our claim in[3]that the accuracy degeneracy phenomenon observed for the high order Lagrangian type scheme is due to the error from the quadrilateral mesh with straight-line edges,which restricts the accuracy of the resulting scheme to at most second order.The accuracy test given in this paper shows that the third order Lagrangian type scheme can actually obtain uniformly third order accuracy even on distorted meshes by using curvilinear meshes.Numerical examples are also presented to verify the performance of the third order scheme on curvilinear meshes in terms of resolution for discontinuities and non-oscillatory properties.展开更多
A new class of finite difference schemes--the weighted compact schemes are proposed. According to the idea of the WENO schemes, the weighted compact scheme is constructed by a combination of the approximations of deri...A new class of finite difference schemes--the weighted compact schemes are proposed. According to the idea of the WENO schemes, the weighted compact scheme is constructed by a combination of the approximations of derivatives on candidate stencils with properly assigned weights so that the non oscillatory property is achieved when discontinuities appear. The primitive function reconstruction method of ENO schemes is applied to obtain the conservative form of the weighted compact scheme. This new scheme not only preserves the characteristic of standard compact schemes and achieves high order accuracy and high resolution using a compact stencil, but also can accurately capture shock waves and discontinuities without oscillation. Numerical examples show that the new scheme is very promising and successful.展开更多
This paper develops the high-order accurate entropy stable finite difference schemes for one-and two-dimensional special relativistic hydrodynamic equations.The schemes are built on the entropy conservative flux and t...This paper develops the high-order accurate entropy stable finite difference schemes for one-and two-dimensional special relativistic hydrodynamic equations.The schemes are built on the entropy conservative flux and the weighted essentially non-oscillatory(WENO)technique as well as explicit Runge-Kutta time discretization.The key is to technically construct the affordable entropy conservative flux of the semi-discrete second-order accurate entropy conservative schemes satisfying the semi-discrete entropy equality for the found convex entropy pair.As soon as the entropy conservative flux is derived,the dissipation term can be added to give the semidiscrete entropy stable schemes satisfying the semi-discrete entropy inequality with the given convex entropy function.The WENO reconstruction for the scaled entropy variables and the high-order explicit Runge-Kutta time discretization are implemented to obtain the fully-discrete high-order entropy stable schemes.Several numerical tests are conducted to validate the accuracy and the ability to capture discontinuities of our entropy stable schemes.展开更多
In this paper, a novel multisymplectic scheme is proposed for the coupled nonlinear Schrodinger-KdV (CNLS-KdV) equations. The CNLS-KdV equations are rewritten into the multisymplectic Hamiltonian form by introducing...In this paper, a novel multisymplectic scheme is proposed for the coupled nonlinear Schrodinger-KdV (CNLS-KdV) equations. The CNLS-KdV equations are rewritten into the multisymplectic Hamiltonian form by introducing some canonical momenta. To simulate the problem efficiently, the CNLS-KdV equations are approximated by a high order compact method in space which preserves N semi-discrete multisymplectic conservation laws. We then discretize the semi-discrete system by using a symplectic midpoint scheme in time. Thus, a full-discrete multisymplectic scheme is obtained for the CNLS-KdV equations. The conservation laws of the full-discrete scheme are analyzed. Some numerical experiments are presented to further verify the convergence and conservation laws of the new scheme.展开更多
Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms.In our earlier work[31–33],we designed high order well-balanced schemes to a cl...Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms.In our earlier work[31–33],we designed high order well-balanced schemes to a class of hyperbolic systems with separable source terms.In this paper,we present a different approach to the same purpose:designing high order well-balanced finite volume weighted essentially non-oscillatory(WENO)schemes and RungeKutta discontinuous Galerkin(RKDG)finite element methods.We make the observation that the traditional RKDG methods are capable of maintaining certain steady states exactly,if a small modification on either the initial condition or the flux is provided.The computational cost to obtain such a well balanced RKDG method is basically the same as the traditional RKDG method.The same idea can be applied to the finite volume WENO schemes.We will first describe the algorithms and prove the well balanced property for the shallow water equations,and then show that the result can be generalized to a class of other balance laws.We perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions,the non-oscillatory property for general solutions with discontinuities,and the genuine high order accuracy in smooth regions.展开更多
This paper presents a novel high-order space-time method for hyperbolic conservation laws.Two important concepts,the staggered space-time mesh of the space-time conservation element/solution element(CE/SE)method and t...This paper presents a novel high-order space-time method for hyperbolic conservation laws.Two important concepts,the staggered space-time mesh of the space-time conservation element/solution element(CE/SE)method and the local discontinuous basis functions of the space-time discontinuous Galerkin(DG)finite element method,are the two key ingredients of the new scheme.The staggered spacetime mesh is constructed using the cell-vertex structure of the underlying spatial mesh.The universal definitions of CEs and SEs are independent of the underlying spatial mesh and thus suitable for arbitrarily unstructured meshes.The solution within each physical time step is updated alternately at the cell level and the vertex level.For this solution updating strategy and the DG ingredient,the new scheme here is termed as the discontinuous Galerkin cell-vertex scheme(DG-CVS).The high order of accuracy is achieved by employing high-order Taylor polynomials as the basis functions inside each SE.The present DG-CVS exhibits many advantageous features such as Riemann-solver-free,high-order accuracy,point-implicitness,compactness,and ease of handling boundary conditions.Several numerical tests including the scalar advection equations and compressible Euler equations will demonstrate the performance of the new method.展开更多
文摘The paper is devised to propose finite volume semi-Lagrange scheme for approximating linear and nonlinear hyperbolic conservation laws. Based on the idea of semi-Lagrangian scheme, we transform the integration of flux in time into the integration in space. Compared with the traditional semi-Lagrange scheme, the scheme devised here tries to directly evaluate the average fluxes along cell edges. It is this difference that makes the scheme in this paper simple to implement and easily extend to nonlinear cases. The procedure of evaluation of the average fluxes only depends on the high-order spatial interpolation. Hence the scheme can be implemented as long as the spatial interpolation is available, and no additional temporal discretization is needed. In this paper, the high-order spatial discretization is chosen to be the classical 5th-order weighted essentially non-oscillatory spatial interpolation. In the end, 1D and 2D numerical results show that this method is rather robust. In addition, to exhibit the numerical resolution and efficiency of the proposed scheme, the numerical solutions of the classical 5th-order WENO scheme combined with the 3rd-order Runge-Kutta temporal discretization (WENOJS) are chosen as the reference. We find that the scheme proposed in the paper generates comparable solutions with that of WENOJS, but with less CPU time.
基金The research of the first author is supported in part by NSFC grant 10572028Addi-tional support is provided by the National Basic Research Program of China under grant 2005CB321702+1 种基金by the Foundation of National Key Laboratory of Computational Physics under grant 9140C6902010603by the National Hi-Tech Inertial Confinement Fusion Committee of China.The research of the second author is supported in part by NSF grant DMS-0510345.
文摘Based on the high order essentially non-oscillatory(ENO)Lagrangian type scheme on quadrilateral meshes presented in our earlier work[3],in this paper we develop a third order conservative Lagrangian type scheme on curvilinear meshes for solving the Euler equations of compressible gas dynamics.The main purpose of this work is to demonstrate our claim in[3]that the accuracy degeneracy phenomenon observed for the high order Lagrangian type scheme is due to the error from the quadrilateral mesh with straight-line edges,which restricts the accuracy of the resulting scheme to at most second order.The accuracy test given in this paper shows that the third order Lagrangian type scheme can actually obtain uniformly third order accuracy even on distorted meshes by using curvilinear meshes.Numerical examples are also presented to verify the performance of the third order scheme on curvilinear meshes in terms of resolution for discontinuities and non-oscillatory properties.
文摘A new class of finite difference schemes--the weighted compact schemes are proposed. According to the idea of the WENO schemes, the weighted compact scheme is constructed by a combination of the approximations of derivatives on candidate stencils with properly assigned weights so that the non oscillatory property is achieved when discontinuities appear. The primitive function reconstruction method of ENO schemes is applied to obtain the conservative form of the weighted compact scheme. This new scheme not only preserves the characteristic of standard compact schemes and achieves high order accuracy and high resolution using a compact stencil, but also can accurately capture shock waves and discontinuities without oscillation. Numerical examples show that the new scheme is very promising and successful.
基金supported by the Special Project on High-performance Computing under the National Key R&D Program(No.2016YFB0200603)Science Challenge Project(No.TZ2016002)the National Natural Science Foundation of China(Nos.91630310 and 11421101),and High-Performance Computing Platform of Peking University.
文摘This paper develops the high-order accurate entropy stable finite difference schemes for one-and two-dimensional special relativistic hydrodynamic equations.The schemes are built on the entropy conservative flux and the weighted essentially non-oscillatory(WENO)technique as well as explicit Runge-Kutta time discretization.The key is to technically construct the affordable entropy conservative flux of the semi-discrete second-order accurate entropy conservative schemes satisfying the semi-discrete entropy equality for the found convex entropy pair.As soon as the entropy conservative flux is derived,the dissipation term can be added to give the semidiscrete entropy stable schemes satisfying the semi-discrete entropy inequality with the given convex entropy function.The WENO reconstruction for the scaled entropy variables and the high-order explicit Runge-Kutta time discretization are implemented to obtain the fully-discrete high-order entropy stable schemes.Several numerical tests are conducted to validate the accuracy and the ability to capture discontinuities of our entropy stable schemes.
基金This work is supported by the NNSFC (Nos. 11771213, 41504078, 11301234, 11271171), the National Key Research and Development Project of China (No. 2016YFC0600310), the Major Projects of Natural Sciences of University in Jiangsu Province of China (No. 15KJA110002) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Provincial Natural Science Foundation of Jiangxi (Nos. 20161ACB20006, 20142BCB23009, 20151BAB 201012).
文摘In this paper, a novel multisymplectic scheme is proposed for the coupled nonlinear Schrodinger-KdV (CNLS-KdV) equations. The CNLS-KdV equations are rewritten into the multisymplectic Hamiltonian form by introducing some canonical momenta. To simulate the problem efficiently, the CNLS-KdV equations are approximated by a high order compact method in space which preserves N semi-discrete multisymplectic conservation laws. We then discretize the semi-discrete system by using a symplectic midpoint scheme in time. Thus, a full-discrete multisymplectic scheme is obtained for the CNLS-KdV equations. The conservation laws of the full-discrete scheme are analyzed. Some numerical experiments are presented to further verify the convergence and conservation laws of the new scheme.
基金supported by ARO grant W911NF-04-1-0291,NSF grant DMS-0510345 and AFOSR grant FA9550-05-1-0123.
文摘Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms.In our earlier work[31–33],we designed high order well-balanced schemes to a class of hyperbolic systems with separable source terms.In this paper,we present a different approach to the same purpose:designing high order well-balanced finite volume weighted essentially non-oscillatory(WENO)schemes and RungeKutta discontinuous Galerkin(RKDG)finite element methods.We make the observation that the traditional RKDG methods are capable of maintaining certain steady states exactly,if a small modification on either the initial condition or the flux is provided.The computational cost to obtain such a well balanced RKDG method is basically the same as the traditional RKDG method.The same idea can be applied to the finite volume WENO schemes.We will first describe the algorithms and prove the well balanced property for the shallow water equations,and then show that the result can be generalized to a class of other balance laws.We perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions,the non-oscillatory property for general solutions with discontinuities,and the genuine high order accuracy in smooth regions.
基金This work is supported by the U.S.Air Force Office of Scientific Research(AFOSR)Computational Mathematics Program under the Award No.FA9550-08-1-0122.
文摘This paper presents a novel high-order space-time method for hyperbolic conservation laws.Two important concepts,the staggered space-time mesh of the space-time conservation element/solution element(CE/SE)method and the local discontinuous basis functions of the space-time discontinuous Galerkin(DG)finite element method,are the two key ingredients of the new scheme.The staggered spacetime mesh is constructed using the cell-vertex structure of the underlying spatial mesh.The universal definitions of CEs and SEs are independent of the underlying spatial mesh and thus suitable for arbitrarily unstructured meshes.The solution within each physical time step is updated alternately at the cell level and the vertex level.For this solution updating strategy and the DG ingredient,the new scheme here is termed as the discontinuous Galerkin cell-vertex scheme(DG-CVS).The high order of accuracy is achieved by employing high-order Taylor polynomials as the basis functions inside each SE.The present DG-CVS exhibits many advantageous features such as Riemann-solver-free,high-order accuracy,point-implicitness,compactness,and ease of handling boundary conditions.Several numerical tests including the scalar advection equations and compressible Euler equations will demonstrate the performance of the new method.