The purpose of this paper is to define the concept of mixed saddle point for a vector-valued Lagrangian of the non-smooth multiobjective vector-valued constrained optimization problem and establish the equivalence of ...The purpose of this paper is to define the concept of mixed saddle point for a vector-valued Lagrangian of the non-smooth multiobjective vector-valued constrained optimization problem and establish the equivalence of the mixed saddle point and an efficient solution under generalized (V, p)-invexity assumptions.展开更多
In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization prob...In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization problems are proved. Under some conditions, the saddle point of the augmented Lagrangian objective penalty function satisfies the first-order Karush-Kuhn-Tucker (KKT) condition. Especially, when the KKT condition holds for convex programming its saddle point exists. Based on the augmented Lagrangian objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions.展开更多
文摘The purpose of this paper is to define the concept of mixed saddle point for a vector-valued Lagrangian of the non-smooth multiobjective vector-valued constrained optimization problem and establish the equivalence of the mixed saddle point and an efficient solution under generalized (V, p)-invexity assumptions.
文摘In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization problems are proved. Under some conditions, the saddle point of the augmented Lagrangian objective penalty function satisfies the first-order Karush-Kuhn-Tucker (KKT) condition. Especially, when the KKT condition holds for convex programming its saddle point exists. Based on the augmented Lagrangian objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions.