The manuscript presents an augmented Lagrangian—fast projected gradient method (ALFPGM) with an improved scheme of working set selection, pWSS, a decomposition based algorithm for training support vector classificati...The manuscript presents an augmented Lagrangian—fast projected gradient method (ALFPGM) with an improved scheme of working set selection, pWSS, a decomposition based algorithm for training support vector classification machines (SVM). The manuscript describes the ALFPGM algorithm, provides numerical results for training SVM on large data sets, and compares the training times of ALFPGM and Sequential Minimal Minimization algorithms (SMO) from Scikit-learn library. The numerical results demonstrate that ALFPGM with the improved working selection scheme is capable of training SVM with tens of thousands of training examples in a fraction of the training time of some widely adopted SVM tools.展开更多
针对现有网络入侵检测方法的不足,提出了一种新的网络入侵检测方法——GATS-LSVM算法。该方法采用遗传算法(GA)与禁忌搜索(TS)相混合的搜索策略对特征子集空间进行随机搜索,利用提供的数据在无约束优化线性支持向量机(LSVM)上的分类错...针对现有网络入侵检测方法的不足,提出了一种新的网络入侵检测方法——GATS-LSVM算法。该方法采用遗传算法(GA)与禁忌搜索(TS)相混合的搜索策略对特征子集空间进行随机搜索,利用提供的数据在无约束优化线性支持向量机(LSVM)上的分类错误率作为特征子集的评估标准获取最优特征子集,从而有效地对入侵进行检测。大量基于著名的KDD Cup 1999数据集的实验表明,该新方法相对于其它一些传统的网络入侵检测方法,能在保证较高检测率的前提下,有效地降低误报率、入侵检测的计算复杂度和提高检测速度,能更适用于现实高速网络应用环境。展开更多
文摘The manuscript presents an augmented Lagrangian—fast projected gradient method (ALFPGM) with an improved scheme of working set selection, pWSS, a decomposition based algorithm for training support vector classification machines (SVM). The manuscript describes the ALFPGM algorithm, provides numerical results for training SVM on large data sets, and compares the training times of ALFPGM and Sequential Minimal Minimization algorithms (SMO) from Scikit-learn library. The numerical results demonstrate that ALFPGM with the improved working selection scheme is capable of training SVM with tens of thousands of training examples in a fraction of the training time of some widely adopted SVM tools.
文摘针对现有网络入侵检测方法的不足,提出了一种新的网络入侵检测方法——GATS-LSVM算法。该方法采用遗传算法(GA)与禁忌搜索(TS)相混合的搜索策略对特征子集空间进行随机搜索,利用提供的数据在无约束优化线性支持向量机(LSVM)上的分类错误率作为特征子集的评估标准获取最优特征子集,从而有效地对入侵进行检测。大量基于著名的KDD Cup 1999数据集的实验表明,该新方法相对于其它一些传统的网络入侵检测方法,能在保证较高检测率的前提下,有效地降低误报率、入侵检测的计算复杂度和提高检测速度,能更适用于现实高速网络应用环境。