Using the resolution of unity composed of bosonic creation operator's eigenkets and annihilation operator's un-normalized eigenket, which is a new quantum mechanical representation in contour integration form, we de...Using the resolution of unity composed of bosonic creation operator's eigenkets and annihilation operator's un-normalized eigenket, which is a new quantum mechanical representation in contour integration form, we derive new contour integration expression of associated Laguerre polynomials L^ρm (|z|^2) and its generalized generating function formula. A series of recursive relations regarding to L^ρm (|z|^2) are also deduced in the context of the Fock representation by algebraic method.展开更多
The bilinear generating function for products of two Laguerre 2D polynomials with different arguments is calculated. It corresponds to the formula of Mehler for the generating function of products of two Hermite polyn...The bilinear generating function for products of two Laguerre 2D polynomials with different arguments is calculated. It corresponds to the formula of Mehler for the generating function of products of two Hermite polynomials. Furthermore, the generating function for mixed products of Laguerre 2D and Hermite 2D polynomials and for products of two Hermite 2D polynomials is calculated. A set of infinite sums over products of two Laguerre 2D polynomials as intermediate step to the generating function for products of Laguerre 2D polynomials is evaluated but these sums possess also proper importance for calculations with Laguerre polynomials. With the technique of operator disentanglement some operator identities are derived in an appendix. They allow calculating convolutions of Gaussian functions combined with polynomials in one- and two-dimensional case and are applied to evaluate the discussed generating functions.展开更多
Abstract. Let {L(Ln^(A,λ)(x)}n≥0 be the sequence of monic Laguerre matrix polynomials defined on [0,∞) byLn^(A,λ)(x)=n!/(-λ)^n ∑nk-0(-λ)^k/k!(n-k)!(A+I)n[(A+I)k]^-1x^k,where A ∈ C^r×...Abstract. Let {L(Ln^(A,λ)(x)}n≥0 be the sequence of monic Laguerre matrix polynomials defined on [0,∞) byLn^(A,λ)(x)=n!/(-λ)^n ∑nk-0(-λ)^k/k!(n-k)!(A+I)n[(A+I)k]^-1x^k,where A ∈ C^r×r. It is known that {Ln^(A,λ)(x)}n≥0 is orthogonal with respect to a matrix moment functional when A satisfies the spectral condition that Re(z) 〉 -1 for every z E or(a). In this note we show that forA such that σ(A) does not contain negative integers, the Laguerre matrix polynomials Ln^(A,λ)(x) are orthogonal with respect to a non-diagonal SobolevLaguerre matrix moment functional, which extends two cases: the above matrix case and the known scalar case.展开更多
In this paper, an efficient numerical method is considered for solving the fractional wave equation (FWE). The fractional derivative is described in the Caputo sense. The method is based on Laguerre approximations. Th...In this paper, an efficient numerical method is considered for solving the fractional wave equation (FWE). The fractional derivative is described in the Caputo sense. The method is based on Laguerre approximations. The properties of Laguerre polynomials are utilized to reduce FWE to a system of ordinary differential equations, which is solved by the finite difference method. An approximate formula of the fractional derivative is given. Special attention is given to study the convergence analysis and estimate an error upper bound of the presented formula. Numerical solutions of FWE are given and the results are compared with the exact solution.展开更多
Here proposed are certain asymptotic expansion formulas for Ln(w-1)(λz) and Cn(ω)(λz) in whichO(λ) and n = 0(λ1/2 )(λ→∞) , z being x complex number. Also presented are certain estimates for the remainders(erro...Here proposed are certain asymptotic expansion formulas for Ln(w-1)(λz) and Cn(ω)(λz) in whichO(λ) and n = 0(λ1/2 )(λ→∞) , z being x complex number. Also presented are certain estimates for the remainders(error bounds) of the asymptotic expansions within the regions D1( - ∞<Rez≤1/2 (ω/λ) and D2(1/2 (ω/λ)≤Re.'C00)? respectively.展开更多
In this article, we obtain explicit solutions of a linear PDE subject to a class of ra-dial square integrable functions with a monotonically increasing weight function|x|n-1eβ|x|2/2,β ≥ 0, x ∈ Rn. This linear ...In this article, we obtain explicit solutions of a linear PDE subject to a class of ra-dial square integrable functions with a monotonically increasing weight function|x|n-1eβ|x|2/2,β ≥ 0, x ∈ Rn. This linear PDE is obtained from a system of forced Burgers equation via the Cole-Hopf transformation. For any spatial dimension n&gt;1, the solution is expressed in terms of a family of weighted generalized Laguerre polynomials. We also discuss the large time behaviour of the solution of the system of forced Burgers equation.展开更多
The main purpose of this paper is to introduce the matrix extension of the pseudo Laguerre matrix polynomials and to explore the formal properties of the operational rules and the principle of quasi-monomiality to der...The main purpose of this paper is to introduce the matrix extension of the pseudo Laguerre matrix polynomials and to explore the formal properties of the operational rules and the principle of quasi-monomiality to derive a number of properties for pseudo Laguerre matrix polynomials.展开更多
In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function...In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function by truncated series of well known Laguerre expansion of functions. This leads to a system of algebraic equations with Laguerre coefficients. Thus, by solving the matrix equation, the coefficients are obtained. Some numerical examples are included to demonstrate the validity and applicability of the proposed method.展开更多
Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely...Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4))...Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4)),and their interaction with distinct irreducible polynomials.The primary aim is to enhance watermarking techniques for achieving imperceptibility,robustness,and efficient execution time.The research employs scene selection and adaptive thresholding techniques to streamline the watermarking process.Scene selection is used strategically to embed watermarks in the most vital frames of the video,while adaptive thresholding methods ensure that the watermarking process adheres to imperceptibility criteria,maintaining the video's visual quality.Concurrently,careful consideration is given to execution time,crucial in real-world scenarios,to balance efficiency and efficacy.The Peak Signal-to-Noise Ratio(PSNR)serves as a pivotal metric to gauge the watermark's imperceptibility and video quality.The study explores various irreducible polynomials,navigating the trade-offs between computational efficiency and watermark imperceptibility.In parallel,the study pays careful attention to the execution time,a paramount consideration in real-world scenarios,to strike a balance between efficiency and efficacy.This comprehensive analysis provides valuable insights into the interplay of GF multiplication tables,diverse irreducible polynomials,scene selection,adaptive thresholding,imperceptibility,and execution time.The evaluation of the proposed algorithm's robustness was conducted using PSNR and NC metrics,and it was subjected to assessment under the impact of five distinct attack scenarios.These findings contribute to the development of watermarking strategies that balance imperceptibility,robustness,and processing efficiency,enhancing the field's practicality and effectiveness.展开更多
In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatmen...In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct.展开更多
Let Abe the linear transformation on the linear space V in the field P, Vλibe the root subspace corresponding to the characteristic polynomial of the eigenvalue λi, and Wλibe the root subspace corresponding to the ...Let Abe the linear transformation on the linear space V in the field P, Vλibe the root subspace corresponding to the characteristic polynomial of the eigenvalue λi, and Wλibe the root subspace corresponding to the minimum polynomial of λi. Consider the problem of whether Vλiand Wλiare equal under the condition that the characteristic polynomial of Ahas the same eigenvalue as the minimum polynomial (see Theorem 1, 2). This article uses the method of mutual inclusion to prove that Vλi=Wλi. Compared to previous studies and proofs, the results of this research can be directly cited in related works. For instance, they can be directly cited in Daoji Meng’s book “Introduction to Differential Geometry.”展开更多
The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when th...The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.展开更多
A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view...A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms.展开更多
基金supported by the Specialized Research Fund for the Doctorial Progress of Higher Education of China under Grant No.20070358009
文摘Using the resolution of unity composed of bosonic creation operator's eigenkets and annihilation operator's un-normalized eigenket, which is a new quantum mechanical representation in contour integration form, we derive new contour integration expression of associated Laguerre polynomials L^ρm (|z|^2) and its generalized generating function formula. A series of recursive relations regarding to L^ρm (|z|^2) are also deduced in the context of the Fock representation by algebraic method.
文摘The bilinear generating function for products of two Laguerre 2D polynomials with different arguments is calculated. It corresponds to the formula of Mehler for the generating function of products of two Hermite polynomials. Furthermore, the generating function for mixed products of Laguerre 2D and Hermite 2D polynomials and for products of two Hermite 2D polynomials is calculated. A set of infinite sums over products of two Laguerre 2D polynomials as intermediate step to the generating function for products of Laguerre 2D polynomials is evaluated but these sums possess also proper importance for calculations with Laguerre polynomials. With the technique of operator disentanglement some operator identities are derived in an appendix. They allow calculating convolutions of Gaussian functions combined with polynomials in one- and two-dimensional case and are applied to evaluate the discussed generating functions.
基金Supported by the National Natural Science Foundation of China(No.10571122)the Beijing Natural Science Foundation(No.1052006)+1 种基金the Project of Excellent Young Teachersthe Doctoral Programme Foundation of National Education Ministry of China
文摘Abstract. Let {L(Ln^(A,λ)(x)}n≥0 be the sequence of monic Laguerre matrix polynomials defined on [0,∞) byLn^(A,λ)(x)=n!/(-λ)^n ∑nk-0(-λ)^k/k!(n-k)!(A+I)n[(A+I)k]^-1x^k,where A ∈ C^r×r. It is known that {Ln^(A,λ)(x)}n≥0 is orthogonal with respect to a matrix moment functional when A satisfies the spectral condition that Re(z) 〉 -1 for every z E or(a). In this note we show that forA such that σ(A) does not contain negative integers, the Laguerre matrix polynomials Ln^(A,λ)(x) are orthogonal with respect to a non-diagonal SobolevLaguerre matrix moment functional, which extends two cases: the above matrix case and the known scalar case.
文摘In this paper, an efficient numerical method is considered for solving the fractional wave equation (FWE). The fractional derivative is described in the Caputo sense. The method is based on Laguerre approximations. The properties of Laguerre polynomials are utilized to reduce FWE to a system of ordinary differential equations, which is solved by the finite difference method. An approximate formula of the fractional derivative is given. Special attention is given to study the convergence analysis and estimate an error upper bound of the presented formula. Numerical solutions of FWE are given and the results are compared with the exact solution.
基金Supported NSFRC(canada)and also by the National Natural Science Foundation of China.
文摘Here proposed are certain asymptotic expansion formulas for Ln(w-1)(λz) and Cn(ω)(λz) in whichO(λ) and n = 0(λ1/2 )(λ→∞) , z being x complex number. Also presented are certain estimates for the remainders(error bounds) of the asymptotic expansions within the regions D1( - ∞<Rez≤1/2 (ω/λ) and D2(1/2 (ω/λ)≤Re.'C00)? respectively.
基金supported by Research Grants of National Board for Higher Mathematics(Award No:2/40(13)/2010-R&D-II/8911)UGC’s Dr.D.S.Kothari Fellowship(Award No.F.4-2/2006(BSR)/13-440/2011(BSR))
文摘In this article, we obtain explicit solutions of a linear PDE subject to a class of ra-dial square integrable functions with a monotonically increasing weight function|x|n-1eβ|x|2/2,β ≥ 0, x ∈ Rn. This linear PDE is obtained from a system of forced Burgers equation via the Cole-Hopf transformation. For any spatial dimension n&gt;1, the solution is expressed in terms of a family of weighted generalized Laguerre polynomials. We also discuss the large time behaviour of the solution of the system of forced Burgers equation.
文摘The main purpose of this paper is to introduce the matrix extension of the pseudo Laguerre matrix polynomials and to explore the formal properties of the operational rules and the principle of quasi-monomiality to derive a number of properties for pseudo Laguerre matrix polynomials.
文摘In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function by truncated series of well known Laguerre expansion of functions. This leads to a system of algebraic equations with Laguerre coefficients. Thus, by solving the matrix equation, the coefficients are obtained. Some numerical examples are included to demonstrate the validity and applicability of the proposed method.
基金supported by the National Natural Science Foundation of China(12131015,12071422).
文摘Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
文摘Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4)),and their interaction with distinct irreducible polynomials.The primary aim is to enhance watermarking techniques for achieving imperceptibility,robustness,and efficient execution time.The research employs scene selection and adaptive thresholding techniques to streamline the watermarking process.Scene selection is used strategically to embed watermarks in the most vital frames of the video,while adaptive thresholding methods ensure that the watermarking process adheres to imperceptibility criteria,maintaining the video's visual quality.Concurrently,careful consideration is given to execution time,crucial in real-world scenarios,to balance efficiency and efficacy.The Peak Signal-to-Noise Ratio(PSNR)serves as a pivotal metric to gauge the watermark's imperceptibility and video quality.The study explores various irreducible polynomials,navigating the trade-offs between computational efficiency and watermark imperceptibility.In parallel,the study pays careful attention to the execution time,a paramount consideration in real-world scenarios,to strike a balance between efficiency and efficacy.This comprehensive analysis provides valuable insights into the interplay of GF multiplication tables,diverse irreducible polynomials,scene selection,adaptive thresholding,imperceptibility,and execution time.The evaluation of the proposed algorithm's robustness was conducted using PSNR and NC metrics,and it was subjected to assessment under the impact of five distinct attack scenarios.These findings contribute to the development of watermarking strategies that balance imperceptibility,robustness,and processing efficiency,enhancing the field's practicality and effectiveness.
文摘In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct.
文摘Let Abe the linear transformation on the linear space V in the field P, Vλibe the root subspace corresponding to the characteristic polynomial of the eigenvalue λi, and Wλibe the root subspace corresponding to the minimum polynomial of λi. Consider the problem of whether Vλiand Wλiare equal under the condition that the characteristic polynomial of Ahas the same eigenvalue as the minimum polynomial (see Theorem 1, 2). This article uses the method of mutual inclusion to prove that Vλi=Wλi. Compared to previous studies and proofs, the results of this research can be directly cited in related works. For instance, they can be directly cited in Daoji Meng’s book “Introduction to Differential Geometry.”
基金Project supported by the National Natural Science Foundation of China(No.12102131)the Natural Science Foundation of Henan Province of China(No.242300420248)the International Science and Technology Cooperation Project of Henan Province of China(No.242102521010)。
文摘The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.
文摘A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms.