Let x : M → R n be an umbilical free hypersurface with non-zero principal curvatures, then x is associated with a Laguerre metric g, a Laguerre tensor L, a Laguerre form C, a Laguerre second fundamental form B, which...Let x : M → R n be an umbilical free hypersurface with non-zero principal curvatures, then x is associated with a Laguerre metric g, a Laguerre tensor L, a Laguerre form C, a Laguerre second fundamental form B, which are invariants of x under Laguerre transformation group. A classical theorem of Laguerre geometry states that M(n > 3) is characterized by g and B up to Laguerre equivalence. A Laguerre isopararmetric hypersurface is defined by satisfying the conditions that C = 0 and all the eigenvalues of B with respect to g are constant. It is easy to see that all Laguerre isopararmetric hypersurfaces are Dupin hypersurfaces. In this paper, we established a complete classification for all Laguerre isopararmetric hypersurfaces with three distinct principal curvatures in R7.展开更多
Let x:M → Rn be an umbilical free hypersurface with non-zero principal curvatures.Then x is associated with a Laguerre metric g,a Laguerre tensor L,a Laguerre form C,and a Laguerre second fundamental form B,which are...Let x:M → Rn be an umbilical free hypersurface with non-zero principal curvatures.Then x is associated with a Laguerre metric g,a Laguerre tensor L,a Laguerre form C,and a Laguerre second fundamental form B,which are invariants of x under Laguerre transformation group.An eigenvalue of Laguerre tensor L of x is called a Laguerre eigenvalue of x.In this paper,we classify all oriented hypersurfaces with constant Laguerre eigenvalues and vanishing Laguerre form.展开更多
基金Supported by the Department of Education of Hubei Province(B2014281)
文摘Let x : M → R n be an umbilical free hypersurface with non-zero principal curvatures, then x is associated with a Laguerre metric g, a Laguerre tensor L, a Laguerre form C, a Laguerre second fundamental form B, which are invariants of x under Laguerre transformation group. A classical theorem of Laguerre geometry states that M(n > 3) is characterized by g and B up to Laguerre equivalence. A Laguerre isopararmetric hypersurface is defined by satisfying the conditions that C = 0 and all the eigenvalues of B with respect to g are constant. It is easy to see that all Laguerre isopararmetric hypersurfaces are Dupin hypersurfaces. In this paper, we established a complete classification for all Laguerre isopararmetric hypersurfaces with three distinct principal curvatures in R7.
基金supported by National Natural Science Foundation of China (Grant Nos.10801006,10971110,10771005)
文摘Let x:M → Rn be an umbilical free hypersurface with non-zero principal curvatures.Then x is associated with a Laguerre metric g,a Laguerre tensor L,a Laguerre form C,and a Laguerre second fundamental form B,which are invariants of x under Laguerre transformation group.An eigenvalue of Laguerre tensor L of x is called a Laguerre eigenvalue of x.In this paper,we classify all oriented hypersurfaces with constant Laguerre eigenvalues and vanishing Laguerre form.