Numerous lakes in western China are excellent sites for understanding environmental change.However,what dominates rare earth element(REE) variations are still under debate in the lake environmental research.In this st...Numerous lakes in western China are excellent sites for understanding environmental change.However,what dominates rare earth element(REE) variations are still under debate in the lake environmental research.In this study,we selected 28 surface sediment samples from 17 lakes(i.e.largescale lakes,small water bodies,etc.) in the QinghaiTibet Plateau and Xinjiang area.These samples were analyzed to reveal the behavior of the REEs and major elements.These REE patterns are characterized by light rare earth element(LREE) enrichment,weak Ce anomaly(0.84-0.98,0.94 on average) and negative Eu anomaly(0.53-1.00,0.67 on average).The homogeneous REE patterns may reflect similar REE of the source lithologys.However,the REE abundances showed some significant differences.In this study,water chemistry data analyses inferred that the highly REE values appear possibly in the saltwater lake,and also related to carbonate mineral,whereas p H played a minor role in REE concentrations.In large-scale lakes(e.g.Lake Bosten and Lake Ulungur),the results showed that the relatively larger REE values are in the margins of lakes.Moreover,lower REE contents are towards the central region.Comprehensive study suggested that five major factors control the REE contents:(1) The REE tends to increase with the increase of the weathering intensity.(2) Likewise,heavy mineral(i.e.rutile,anatase,zircon,etc.) are probably primary in these sediments because they are highly enriched in the REE.(3) The contribution of Fe-Mn oxides is significant in sediments because their concentrations highly correlate with the REE.(4) The carbonate mineral(mainly calcite) played a significant role on the REE values in the lakes because the REEs are incorporated into the carbonate minerals generating the low REE concentrations.(5) Major element analysis,mineral analysis,and grain-size data analysis showed that the REE distribution is chiefly influenced by finer grain-size component of lake sediments due to the decreasing proportion of quartz and feldspar than coarser one.Moreover,the clay minerals in finer grain-size sediments can highly absorb the REE.展开更多
The establishment of reliable age in the lake sediment profile mainly depends on the AMS 14C dating technique.However,the presence of the 14C lake reservoir effects(LREs)restricted for using radiocarbon dating in lake...The establishment of reliable age in the lake sediment profile mainly depends on the AMS 14C dating technique.However,the presence of the 14C lake reservoir effects(LREs)restricted for using radiocarbon dating in lake sediment,especially in dry and cold areas with a scarce plant cover in the Qinghai-Tibet Plateau.Hence,the discussion of influence factors of LREs is crucial.This paper selected 15 lakes(17 sediment and 3 plant samples)in the Qinghai-Tibet Plateau to examine the distribution characteristics of the modern LREs and their main influencing factors.In our study area,14 lakes were all affected by the LREs.The minimum 14C year is 5900 a BP towards the deep water area,whereas the maximum 14C year is up to 7185 a BP in the margins of Lake Heihai.The maximum 14C year is up to 7750 a BP,and the minimum 14C year is present-day carbon in the 15 lakes.One further study indicated that the LRE differences in individual lake are mostly owing to the contribution of exogenous carbonate.The results displayed that the LREs tended to increase with the increase of the salinity,moreover,the LREs of saltwater lakes or salt lakes were significantly larger than freshwater lakes due to the possible supply of old total dissolved inorganic carbon with a long residence time in the lakes.Moreover,the contribution of calcite played a significant role on the LREs.Additionally,the LREs differences are affected by the source of organic matter.The lake with groundwater supply shows large LRE due to likely being influenced by crustal and ancient CO_(2) uprising.展开更多
The modern pollen assemblages of surface lake sediments and topsoils in northwestern China were studied to understand the relationship of modem pollen data with contemporary vegetation and climate, and the differences...The modern pollen assemblages of surface lake sediments and topsoils in northwestern China were studied to understand the relationship of modem pollen data with contemporary vegetation and climate, and the differences between the pollen assem- blages of surface lake sediments and topsoils. The results show that Chenopodiaceae and Artemisia are dominant elements in the pollen assemblages of northwestern China. Additionally, Ephedra, Cyperaceae, Asteraceae, Poaceae, Picea, Pinus, and Betula are also important pollen taxa. Both pollen assemblages and principal component analysis indicate that pollen data from surface lake sediments and topsoils can be used to differentiate the main vegetation types of this region (desert, steppe, mead- ow and forest). However, differences exist between modern pollen assemblages of the two types of sediments due to the dif- ferent relevant source areas of pollen and degrees of pollen preservation. For example, the larger relevant source area of sur- face lake sediment results in a higher abundance of Betula in pollen assemblage from surface lake sediment, whereas the ten- dency to disintegrate thin-walled pollen types in topsoil leads to a higher proportion of resistant pollen, such as Asteraceae. Linear regression analysis indicates that the Artemisia/Chenopodiaceae (A/C) ratio in pollen assemblages of surface lake sedi- ments can be used to indicate humidity changes in the study area. However, the A/C ratio in topsoils should be used carefully. Our results suggest that pollen data from surface lake sediments would be better references for interpreting the fossil pollen assemblages of lake cores or lacustrine profiles.展开更多
Modern pollen analysis is the basis for revealing the palaeovegetation and palaeoclimate changes from fossil pollen spectra.Many studies pertaining to the modern pollen assemblages on the Tibetan Plateau have been con...Modern pollen analysis is the basis for revealing the palaeovegetation and palaeoclimate changes from fossil pollen spectra.Many studies pertaining to the modern pollen assemblages on the Tibetan Plateau have been conducted,but little attention has been paid to pollen assemblages of surface lake sediments.In this study,modern pollen assemblages of surface lake sediments from 34 lakes in the steppe and desert zones of the Tibetan Plateau are investigated and results indicate that the two vegetation zones are dominated by non-arboreal pollen taxa and show distinctive characteristics.The pollen assemblages from the desert zone contain substantially high relative abundance of Chenopodiaceae while those from the steppe zone are dominated by Cyperaceae.Pollen ratios show great potential in terms of separating different vegetation zones and to indicate climate changes on the Tibetan Plateau.The Artemisia/Chenopodiaceae ratio and arboreal/non-arboreal pollen ratio could be used as proxies for winter precipitation.Artemisia/Cyperaceae ratio and the sum of relative abundance of xerophilous elements increase with enhanced warming and aridity.When considering the vegetation coverage around the lakes,hierarchical cluster analysis suggests that the studied sites can be divided into four clusters:meadow,steppe,desert-steppe,and desert.The pollen-based vegetation classification models are established using a random forest algorithm.The random forest model can effectively separate the modern pollen assemblages of the steppe zone from those of the desert zone on the Tibetan Plateau.The model for distinguishing the four vegetation clusters shows a weaker but still valid classifying power.It is expected that the random forest model can provide a powerful tool to reconstruct the palaeovegetation succession on the Tibetan Plateau when more pollen data from surface lake sediments are included.展开更多
基金supported by a grant from Research Fund for the Doctoral Program of Higher Education of East China University of Technology (DHBK2019012)Key Laboratory for Digital Land and Resources of Jiangxi Province,East China University of Technology (DLLJ202018)。
文摘Numerous lakes in western China are excellent sites for understanding environmental change.However,what dominates rare earth element(REE) variations are still under debate in the lake environmental research.In this study,we selected 28 surface sediment samples from 17 lakes(i.e.largescale lakes,small water bodies,etc.) in the QinghaiTibet Plateau and Xinjiang area.These samples were analyzed to reveal the behavior of the REEs and major elements.These REE patterns are characterized by light rare earth element(LREE) enrichment,weak Ce anomaly(0.84-0.98,0.94 on average) and negative Eu anomaly(0.53-1.00,0.67 on average).The homogeneous REE patterns may reflect similar REE of the source lithologys.However,the REE abundances showed some significant differences.In this study,water chemistry data analyses inferred that the highly REE values appear possibly in the saltwater lake,and also related to carbonate mineral,whereas p H played a minor role in REE concentrations.In large-scale lakes(e.g.Lake Bosten and Lake Ulungur),the results showed that the relatively larger REE values are in the margins of lakes.Moreover,lower REE contents are towards the central region.Comprehensive study suggested that five major factors control the REE contents:(1) The REE tends to increase with the increase of the weathering intensity.(2) Likewise,heavy mineral(i.e.rutile,anatase,zircon,etc.) are probably primary in these sediments because they are highly enriched in the REE.(3) The contribution of Fe-Mn oxides is significant in sediments because their concentrations highly correlate with the REE.(4) The carbonate mineral(mainly calcite) played a significant role on the REE values in the lakes because the REEs are incorporated into the carbonate minerals generating the low REE concentrations.(5) Major element analysis,mineral analysis,and grain-size data analysis showed that the REE distribution is chiefly influenced by finer grain-size component of lake sediments due to the decreasing proportion of quartz and feldspar than coarser one.Moreover,the clay minerals in finer grain-size sediments can highly absorb the REE.
基金The work was supported by a grant from Research Fund for the Doctoral Program of Higher Education of East China University of Technology(DHBK2019012)Key Laboratory for Digital Land and Resources of Jiangxi Province,East China University of Technology(DLLJ202018)Key Research and Development Program of Jiangxi Province(20181BBG70037).
文摘The establishment of reliable age in the lake sediment profile mainly depends on the AMS 14C dating technique.However,the presence of the 14C lake reservoir effects(LREs)restricted for using radiocarbon dating in lake sediment,especially in dry and cold areas with a scarce plant cover in the Qinghai-Tibet Plateau.Hence,the discussion of influence factors of LREs is crucial.This paper selected 15 lakes(17 sediment and 3 plant samples)in the Qinghai-Tibet Plateau to examine the distribution characteristics of the modern LREs and their main influencing factors.In our study area,14 lakes were all affected by the LREs.The minimum 14C year is 5900 a BP towards the deep water area,whereas the maximum 14C year is up to 7185 a BP in the margins of Lake Heihai.The maximum 14C year is up to 7750 a BP,and the minimum 14C year is present-day carbon in the 15 lakes.One further study indicated that the LRE differences in individual lake are mostly owing to the contribution of exogenous carbonate.The results displayed that the LREs tended to increase with the increase of the salinity,moreover,the LREs of saltwater lakes or salt lakes were significantly larger than freshwater lakes due to the possible supply of old total dissolved inorganic carbon with a long residence time in the lakes.Moreover,the contribution of calcite played a significant role on the LREs.Additionally,the LREs differences are affected by the source of organic matter.The lake with groundwater supply shows large LRE due to likely being influenced by crustal and ancient CO_(2) uprising.
基金supported by the National Basic Research Program of China(Grant No.2012CB956102)the National Natural Science Foundation of China(Grant Nos.41071126,41125006,41401227)the China Postdoctoral Science Foundation(Grant No.2014M550822)
文摘The modern pollen assemblages of surface lake sediments and topsoils in northwestern China were studied to understand the relationship of modem pollen data with contemporary vegetation and climate, and the differences between the pollen assem- blages of surface lake sediments and topsoils. The results show that Chenopodiaceae and Artemisia are dominant elements in the pollen assemblages of northwestern China. Additionally, Ephedra, Cyperaceae, Asteraceae, Poaceae, Picea, Pinus, and Betula are also important pollen taxa. Both pollen assemblages and principal component analysis indicate that pollen data from surface lake sediments and topsoils can be used to differentiate the main vegetation types of this region (desert, steppe, mead- ow and forest). However, differences exist between modern pollen assemblages of the two types of sediments due to the dif- ferent relevant source areas of pollen and degrees of pollen preservation. For example, the larger relevant source area of sur- face lake sediment results in a higher abundance of Betula in pollen assemblage from surface lake sediment, whereas the ten- dency to disintegrate thin-walled pollen types in topsoil leads to a higher proportion of resistant pollen, such as Asteraceae. Linear regression analysis indicates that the Artemisia/Chenopodiaceae (A/C) ratio in pollen assemblages of surface lake sedi- ments can be used to indicate humidity changes in the study area. However, the A/C ratio in topsoils should be used carefully. Our results suggest that pollen data from surface lake sediments would be better references for interpreting the fossil pollen assemblages of lake cores or lacustrine profiles.
基金the National Natural Science Foundation of China(Grant Nos.41671202&41690113)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA20070101)the National Key Research and Development Program of China(Grant No.2016YFA0600501)。
文摘Modern pollen analysis is the basis for revealing the palaeovegetation and palaeoclimate changes from fossil pollen spectra.Many studies pertaining to the modern pollen assemblages on the Tibetan Plateau have been conducted,but little attention has been paid to pollen assemblages of surface lake sediments.In this study,modern pollen assemblages of surface lake sediments from 34 lakes in the steppe and desert zones of the Tibetan Plateau are investigated and results indicate that the two vegetation zones are dominated by non-arboreal pollen taxa and show distinctive characteristics.The pollen assemblages from the desert zone contain substantially high relative abundance of Chenopodiaceae while those from the steppe zone are dominated by Cyperaceae.Pollen ratios show great potential in terms of separating different vegetation zones and to indicate climate changes on the Tibetan Plateau.The Artemisia/Chenopodiaceae ratio and arboreal/non-arboreal pollen ratio could be used as proxies for winter precipitation.Artemisia/Cyperaceae ratio and the sum of relative abundance of xerophilous elements increase with enhanced warming and aridity.When considering the vegetation coverage around the lakes,hierarchical cluster analysis suggests that the studied sites can be divided into four clusters:meadow,steppe,desert-steppe,and desert.The pollen-based vegetation classification models are established using a random forest algorithm.The random forest model can effectively separate the modern pollen assemblages of the steppe zone from those of the desert zone on the Tibetan Plateau.The model for distinguishing the four vegetation clusters shows a weaker but still valid classifying power.It is expected that the random forest model can provide a powerful tool to reconstruct the palaeovegetation succession on the Tibetan Plateau when more pollen data from surface lake sediments are included.