With the decrease in surface and shallow ore deposits,mineral exploration has focused on deeply buried ore bodies,and large-scale metallogenic prediction presents new opportunities and challenges.This paper adopts the...With the decrease in surface and shallow ore deposits,mineral exploration has focused on deeply buried ore bodies,and large-scale metallogenic prediction presents new opportunities and challenges.This paper adopts the predictive thinking method in this era of big data combined with specific research on the special exploration and exploitation of deep-earth resources.Four basic theoretical models of large-scale deep mineralization prediction and evaluation are explored:mineral prediction geological model theory,multidisciplinary information correlation theory,mineral regional trend analysis theory,and mineral prediction geological differentiation theory.The main workflow of large-scale deep resource prediction in the digital and information age is summarized,including construction of ore prospecting models of metallogenic systems,multiscale 3 D geological modeling,and 3 D quantitative prediction of deep resources.Taking the Lala copper mine in Sichuan Province as an example,this paper carries out deep 3 D quantitative prediction of mineral resources and makes a positive contribution to the future prediction and evaluation of mineral resources.展开更多
This study focused on the typical Precambrian copper- iron-gold-uranium deposits in the southwestern margin of the Yangtze block, such as the Lala in Huili, Dahongshan in Xinping, Yinachang in Wuding, and Chahe in Yua...This study focused on the typical Precambrian copper- iron-gold-uranium deposits in the southwestern margin of the Yangtze block, such as the Lala in Huili, Dahongshan in Xinping, Yinachang in Wuding, and Chahe in Yuanjiang. Through systematically sampling of rocks, mineral and single mineral samples, this study discussed the continental geodynamics, age of magmatic rocks and metallogenic epoch, coupling relationship between polymetallic elements and ore-forming fluid, and the coupling relationship between magma evolution and polymetallic mineralization based on the latest metallogenic theory and modern analytical techniques.展开更多
基金financially supported by the National Natural Science Foundation of China(No.42002298)the National Key Research and Development Program of China(No.2017YFC0601501)+1 种基金China Geological Survey(No.DD20201181)the Open Research Fund Program of the Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education(No.2020YSJS09)。
文摘With the decrease in surface and shallow ore deposits,mineral exploration has focused on deeply buried ore bodies,and large-scale metallogenic prediction presents new opportunities and challenges.This paper adopts the predictive thinking method in this era of big data combined with specific research on the special exploration and exploitation of deep-earth resources.Four basic theoretical models of large-scale deep mineralization prediction and evaluation are explored:mineral prediction geological model theory,multidisciplinary information correlation theory,mineral regional trend analysis theory,and mineral prediction geological differentiation theory.The main workflow of large-scale deep resource prediction in the digital and information age is summarized,including construction of ore prospecting models of metallogenic systems,multiscale 3 D geological modeling,and 3 D quantitative prediction of deep resources.Taking the Lala copper mine in Sichuan Province as an example,this paper carries out deep 3 D quantitative prediction of mineral resources and makes a positive contribution to the future prediction and evaluation of mineral resources.
基金financially supported by China Geological Survey (grant no.12120113095500)the National Basic Research Program of China (973 Program) (grant no.2015CB453000)the Foundation of China Nuclear Geology (grant no.201148)
文摘This study focused on the typical Precambrian copper- iron-gold-uranium deposits in the southwestern margin of the Yangtze block, such as the Lala in Huili, Dahongshan in Xinping, Yinachang in Wuding, and Chahe in Yuanjiang. Through systematically sampling of rocks, mineral and single mineral samples, this study discussed the continental geodynamics, age of magmatic rocks and metallogenic epoch, coupling relationship between polymetallic elements and ore-forming fluid, and the coupling relationship between magma evolution and polymetallic mineralization based on the latest metallogenic theory and modern analytical techniques.