多种群遗传算法相比遗传算法在性能上能够有所提高,但对具有较多局部最优解的作业车间调度问题,多种群遗传算法仍然难以改善易陷入局部最优解和局部搜索能力差的缺点.因此,提出了一种求解作业车间调度问题的新算法MGA-MBL(multi-populat...多种群遗传算法相比遗传算法在性能上能够有所提高,但对具有较多局部最优解的作业车间调度问题,多种群遗传算法仍然难以改善易陷入局部最优解和局部搜索能力差的缺点.因此,提出了一种求解作业车间调度问题的新算法MGA-MBL(multi-population genetic algorithm based on memory-base and Lamarckian evolution for jobshop scheduling problem).MGA-MBL在多种群遗传算法的基础上通过引入记忆库策略,不但使子种群间的个体可以进行信息交换,而且有利于保持整个种群的多样性;通过构造基于拉马克进化机制的局部搜索算子来提高多种群遗传算法中子种群进化的局部搜索能力.由于MGA-MBL采用了全局寻优能力较强的模拟退火算法对记忆库中的个体进行优化,从而缓解了多种群遗传算法易陷入局部最优解的问题,并提高了算法求解作业车间调度问题的性能.对著名的benchmark数据进行测试,实验结果证实了MGA-MBL在求解作业车间调度问题上的有效性.展开更多
Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative partic...Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative particle swarm optimization(MHCHPSO)to optimize sensor deployment location and improve the coverage of WSN.MHCHPSO divides the population into three types topology:diversity topology for global exploration,fast convergence topology for local development,and collaboration topology for exploration and development.All topologies are optimized in parallel to overcome the precocious convergence of PSO.This paper compares with various heuristic algorithms at CEC 2013,CEC 2015,and CEC 2017.The experimental results show that MHCHPSO outperforms the comparison algorithms.In addition,MHCHPSO is applied to the WSN localization optimization,and the experimental results confirm the optimization ability of MHCHPSO in practical engineering problems.展开更多
具有单连续变量的背包问题(knapsack problem with a single continuous variable,KPC)是标准0-1背包问题的自然推广,在KPC中背包容量不是固定的,因此其求解难度变大。针对现有差分进化(differential evolution,DE)算法在高维KPC实例上...具有单连续变量的背包问题(knapsack problem with a single continuous variable,KPC)是标准0-1背包问题的自然推广,在KPC中背包容量不是固定的,因此其求解难度变大。针对现有差分进化(differential evolution,DE)算法在高维KPC实例上求解精度不够高的不足,提出基于拉马克进化的DE(Lamarckian evolution-based DE,LEDE)算法,将贪心修复优化算子产生的改进遗传给后代,以加快DE算法的收敛速度,提高DE算法在高维KPC实例上的求解精度。同时,在贪心修复优化算子中引入基于价值的贪心优化策略,用于优化使用基于价值密度的贪心修复策略生成的可行解,以帮助算法跳出局部最优。在40个KPC实例上对LEDE算法进行了实验分析,结果表明拉马克进化和基于价值的贪心优化策略能够提高LEDE算法的求精能力,LEDE算法在获得最优解和平均解方面均优于其他智能优化算法。展开更多
文摘多种群遗传算法相比遗传算法在性能上能够有所提高,但对具有较多局部最优解的作业车间调度问题,多种群遗传算法仍然难以改善易陷入局部最优解和局部搜索能力差的缺点.因此,提出了一种求解作业车间调度问题的新算法MGA-MBL(multi-population genetic algorithm based on memory-base and Lamarckian evolution for jobshop scheduling problem).MGA-MBL在多种群遗传算法的基础上通过引入记忆库策略,不但使子种群间的个体可以进行信息交换,而且有利于保持整个种群的多样性;通过构造基于拉马克进化机制的局部搜索算子来提高多种群遗传算法中子种群进化的局部搜索能力.由于MGA-MBL采用了全局寻优能力较强的模拟退火算法对记忆库中的个体进行优化,从而缓解了多种群遗传算法易陷入局部最优解的问题,并提高了算法求解作业车间调度问题的性能.对著名的benchmark数据进行测试,实验结果证实了MGA-MBL在求解作业车间调度问题上的有效性.
基金supported by the National Key Research and Development Program Projects of China(No.2018YFC1504705)the National Natural Science Foundation of China(No.61731015)+1 种基金the Major instrument special project of National Natural Science Foundation of China(No.42027806)the Key Research and Development Program of Shaanxi(No.2022GY-331)。
文摘Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative particle swarm optimization(MHCHPSO)to optimize sensor deployment location and improve the coverage of WSN.MHCHPSO divides the population into three types topology:diversity topology for global exploration,fast convergence topology for local development,and collaboration topology for exploration and development.All topologies are optimized in parallel to overcome the precocious convergence of PSO.This paper compares with various heuristic algorithms at CEC 2013,CEC 2015,and CEC 2017.The experimental results show that MHCHPSO outperforms the comparison algorithms.In addition,MHCHPSO is applied to the WSN localization optimization,and the experimental results confirm the optimization ability of MHCHPSO in practical engineering problems.
文摘具有单连续变量的背包问题(knapsack problem with a single continuous variable,KPC)是标准0-1背包问题的自然推广,在KPC中背包容量不是固定的,因此其求解难度变大。针对现有差分进化(differential evolution,DE)算法在高维KPC实例上求解精度不够高的不足,提出基于拉马克进化的DE(Lamarckian evolution-based DE,LEDE)算法,将贪心修复优化算子产生的改进遗传给后代,以加快DE算法的收敛速度,提高DE算法在高维KPC实例上的求解精度。同时,在贪心修复优化算子中引入基于价值的贪心优化策略,用于优化使用基于价值密度的贪心修复策略生成的可行解,以帮助算法跳出局部最优。在40个KPC实例上对LEDE算法进行了实验分析,结果表明拉马克进化和基于价值的贪心优化策略能够提高LEDE算法的求精能力,LEDE算法在获得最优解和平均解方面均优于其他智能优化算法。