To overcome the problem of interlaminar delamination of thermoplastic polyurethane laminated glass, silicate glass was etched with hydrofluoric acid and thermoplastic polyurethane was then treated with cold plasma. Co...To overcome the problem of interlaminar delamination of thermoplastic polyurethane laminated glass, silicate glass was etched with hydrofluoric acid and thermoplastic polyurethane was then treated with cold plasma. Compared with the untreated samples, the interlaminar shear strength of acid etching samples, cold plasma-treated samples and acid etching combined with cold plasma-treated samples increased by 97%, 84% and 341%, respectively. Acid etching combined with cold plasma-treated samples exhibited a higher flexural strength and strain as compared with the untreated samples. The impact energy of acid etching samples, cold plasmatreated samples and acid etching combined with cold plasma-treated samples increased by 8.7%, 8.1% and 11.6%, respectively, in comparison with the untreated samples. FT-IR analysis showed that a large number of -C-O, CO N and CO O C groups appeared on the surface of cold plasma-treated thermoplastic polyurethane, which resulted in the formation of hydrogen bonds. SEM results showed that some pittings formed on the surface of the silicate glass treated by acid etching, which resulted in the formation of a three-dimensional interface structure between tile silicate glass and polyurethane. Hydrogen bonds combined with the three-dimensional interface between silicate glass and polyurethanes co-improved the mechanical properties of thermoplastic polyurethanes laminated glass.展开更多
In this study, in order to determine the very early load transfer behavior in the bolted joint connection, experimental dynamic analysis of different laminated glass beams including two surface cracks is considered. F...In this study, in order to determine the very early load transfer behavior in the bolted joint connection, experimental dynamic analysis of different laminated glass beams including two surface cracks is considered. For this purpose, both three different plastic interlayers (i.e., three types of polyvinyl butyral--PVB) and three different glass-lamina thicknesses are taken into account. Effects of the plastic interlayer, thickness of the glass-lamina, number of surface cracks and their locations on the vibration characteristics/structural performances are examined experimentally. Vibration tests are performed to present free vibration characteristics of the laminated glass beams under clamped-free boundary conditions. Experimental dynamic analysis consists of six parts: (I) vibration analysis with no-crack and no-hole with a bolted joint; (I1) vibration analysis with a surface crack and no-hole with a bolted joint; (III) vibration analysis with two surface cracks and no-hole with a bolted joint; (IV) vibration analysis with no-crack and a hole with a bolted joint; (V) vibration analysis with a surface crack and a hole with a bolted joint; (VI) vibration analysis with two surface cracks and a hole with a bolted joint. For these experimental steps, an impact hammer with a force transducer is used to excite the uncracked or cracked composite beams through the selected points. After the excitation, the responses are obtained by an accelerometer. The vibration measurements are completed using a microprocessor-based data acquisition system and nCode GlyphWorks software. Results are given in tabular and graphical forms.展开更多
The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigate...The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.展开更多
A fatigue failure criterion for predicting the fatigue life of notched orthotropic fiber reinforced plasties (FRP) plates based on the concept of stress field intensity (SFI) near the notch root is subjected to furt...A fatigue failure criterion for predicting the fatigue life of notched orthotropic fiber reinforced plasties (FRP) plates based on the concept of stress field intensity (SFI) near the notch root is subjected to further experiments. The investigation is accomplished by obtaining experimental data on the notched specimens of glass fiber reinforced plastics (GFRP) with edged notches under tension tension cyclic loading. The process of initiation and growth of fatigue damage near the notch root is measured by means of the optic system with a computer controlled display (CCD) camera. The experimental results show that the number of loading cycles required to initiate fatigue damage is governed by the stress field intensity.展开更多
In this paper, a calculation model based on the subsection displacement theory and the large deflection analysis is developed to describe the dynamic response of isotropic laminated circular plates impacted by a soft ...In this paper, a calculation model based on the subsection displacement theory and the large deflection analysis is developed to describe the dynamic response of isotropic laminated circular plates impacted by a soft body. The model takes into account the interlaminar shear effect induced by the middle weak layer. It is proved by numerical examples that the difference between the model developed in this paper and that based on the classical laminated theory mainly depends on three factors, the elastic modulus of the glue, the radius of the circular plate and the impact force.展开更多
Composite materials are widely employed in various industries,such as aerospace,automobile,and sports equipment,owing to their lightweight and strong structure in comparison with conventional materials.I aser material...Composite materials are widely employed in various industries,such as aerospace,automobile,and sports equipment,owing to their lightweight and strong structure in comparison with conventional materials.I aser material processing is a rapid technique for performing the various processes on composite materials.In particular,laser forming is a flexible and reliable approach for shaping fiber-metal laminates(FML.s),which are widely used in the aerospace industry due to several advantages,such as high strength and light weight.In this study,a prediction model was developed for determining the optimal laser parameters(power and speed)when forming FML composites.Artificial neural networks(ANNs)were applied to estimate the process outputs(temperature and bending angle)as a result of the modeling process.For this purpose,several ANN models were developed using various strategies.Finally,the achieved results demonstrated the advantage of the models for predicting the optimal operational parameters.展开更多
GLARE (glass fibre/epoxy reinforced aluminum laminate) is a member of the fiber metal laminate (FML) family, and is built up of alternating metal and fiber layers. About 500 m2 GLARE is employed in each Airbus A38...GLARE (glass fibre/epoxy reinforced aluminum laminate) is a member of the fiber metal laminate (FML) family, and is built up of alternating metal and fiber layers. About 500 m2 GLARE is employed in each Airbus A380 because of the superior mechanical properties over the monolithic Muminum alloys, such as weight reduction, improved damage tolerance and higher ultimate tensile strength. Many tons of new GLARE scraps have been accumulated during the Airbus A380 manufacturing. Moreover, with the increasing plane orders of Airbus A380, more and more end-of-life (EOL) GLARE scrap will be generated after retire of planes within forty years. Thermal processing is a potential method for the material recycling and re-use from GLARE with the aim of environmental protection and economic benefits. The current study indicatdes that thermal delamination is a crucial pre-treatment step for the GLARE recycling. The decomposition behavior of the epoxy resins at elevated temperatures was investigated by using the simultaneous thermal analysis, thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). Based on the thermal analysis results, GLARE thermal delamination experiments at refined temperatures were carried out to optimize the treatment temperature and holding time.展开更多
基金supported by Aeronautical Science Foundation of China(Nos.2012ZF56025,2011ZF56013)the Scientific Research Project Foundation of Jiangxi Provincial Education Department(Nos.GJJ11497,GJJ13477)State Key Laboratory of Advanced Technology for Materials Synthesis and Processing of China(Wuhan University of Technology)(No.2012-KF-8)
文摘To overcome the problem of interlaminar delamination of thermoplastic polyurethane laminated glass, silicate glass was etched with hydrofluoric acid and thermoplastic polyurethane was then treated with cold plasma. Compared with the untreated samples, the interlaminar shear strength of acid etching samples, cold plasma-treated samples and acid etching combined with cold plasma-treated samples increased by 97%, 84% and 341%, respectively. Acid etching combined with cold plasma-treated samples exhibited a higher flexural strength and strain as compared with the untreated samples. The impact energy of acid etching samples, cold plasmatreated samples and acid etching combined with cold plasma-treated samples increased by 8.7%, 8.1% and 11.6%, respectively, in comparison with the untreated samples. FT-IR analysis showed that a large number of -C-O, CO N and CO O C groups appeared on the surface of cold plasma-treated thermoplastic polyurethane, which resulted in the formation of hydrogen bonds. SEM results showed that some pittings formed on the surface of the silicate glass treated by acid etching, which resulted in the formation of a three-dimensional interface structure between tile silicate glass and polyurethane. Hydrogen bonds combined with the three-dimensional interface between silicate glass and polyurethanes co-improved the mechanical properties of thermoplastic polyurethanes laminated glass.
文摘In this study, in order to determine the very early load transfer behavior in the bolted joint connection, experimental dynamic analysis of different laminated glass beams including two surface cracks is considered. For this purpose, both three different plastic interlayers (i.e., three types of polyvinyl butyral--PVB) and three different glass-lamina thicknesses are taken into account. Effects of the plastic interlayer, thickness of the glass-lamina, number of surface cracks and their locations on the vibration characteristics/structural performances are examined experimentally. Vibration tests are performed to present free vibration characteristics of the laminated glass beams under clamped-free boundary conditions. Experimental dynamic analysis consists of six parts: (I) vibration analysis with no-crack and no-hole with a bolted joint; (I1) vibration analysis with a surface crack and no-hole with a bolted joint; (III) vibration analysis with two surface cracks and no-hole with a bolted joint; (IV) vibration analysis with no-crack and a hole with a bolted joint; (V) vibration analysis with a surface crack and a hole with a bolted joint; (VI) vibration analysis with two surface cracks and a hole with a bolted joint. For these experimental steps, an impact hammer with a force transducer is used to excite the uncracked or cracked composite beams through the selected points. After the excitation, the responses are obtained by an accelerometer. The vibration measurements are completed using a microprocessor-based data acquisition system and nCode GlyphWorks software. Results are given in tabular and graphical forms.
文摘The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.
文摘A fatigue failure criterion for predicting the fatigue life of notched orthotropic fiber reinforced plasties (FRP) plates based on the concept of stress field intensity (SFI) near the notch root is subjected to further experiments. The investigation is accomplished by obtaining experimental data on the notched specimens of glass fiber reinforced plastics (GFRP) with edged notches under tension tension cyclic loading. The process of initiation and growth of fatigue damage near the notch root is measured by means of the optic system with a computer controlled display (CCD) camera. The experimental results show that the number of loading cycles required to initiate fatigue damage is governed by the stress field intensity.
基金Project supported by the National Natural Science Foundation of China (No. 11032001)
文摘In this paper, a calculation model based on the subsection displacement theory and the large deflection analysis is developed to describe the dynamic response of isotropic laminated circular plates impacted by a soft body. The model takes into account the interlaminar shear effect induced by the middle weak layer. It is proved by numerical examples that the difference between the model developed in this paper and that based on the classical laminated theory mainly depends on three factors, the elastic modulus of the glue, the radius of the circular plate and the impact force.
文摘Composite materials are widely employed in various industries,such as aerospace,automobile,and sports equipment,owing to their lightweight and strong structure in comparison with conventional materials.I aser material processing is a rapid technique for performing the various processes on composite materials.In particular,laser forming is a flexible and reliable approach for shaping fiber-metal laminates(FML.s),which are widely used in the aerospace industry due to several advantages,such as high strength and light weight.In this study,a prediction model was developed for determining the optimal laser parameters(power and speed)when forming FML composites.Artificial neural networks(ANNs)were applied to estimate the process outputs(temperature and bending angle)as a result of the modeling process.For this purpose,several ANN models were developed using various strategies.Finally,the achieved results demonstrated the advantage of the models for predicting the optimal operational parameters.
基金the Royal Netherlands Academy of Science and Arts(KNAW)(No.10CDP026)the National Outstanding Young Scientist Foundation of China (No.50825401)the National Natural Science Foundation of China(No.50821003)
文摘GLARE (glass fibre/epoxy reinforced aluminum laminate) is a member of the fiber metal laminate (FML) family, and is built up of alternating metal and fiber layers. About 500 m2 GLARE is employed in each Airbus A380 because of the superior mechanical properties over the monolithic Muminum alloys, such as weight reduction, improved damage tolerance and higher ultimate tensile strength. Many tons of new GLARE scraps have been accumulated during the Airbus A380 manufacturing. Moreover, with the increasing plane orders of Airbus A380, more and more end-of-life (EOL) GLARE scrap will be generated after retire of planes within forty years. Thermal processing is a potential method for the material recycling and re-use from GLARE with the aim of environmental protection and economic benefits. The current study indicatdes that thermal delamination is a crucial pre-treatment step for the GLARE recycling. The decomposition behavior of the epoxy resins at elevated temperatures was investigated by using the simultaneous thermal analysis, thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). Based on the thermal analysis results, GLARE thermal delamination experiments at refined temperatures were carried out to optimize the treatment temperature and holding time.