Lamprophyres typically appear in hydrothermal gold deposits.The relationship between lamprophyres and gold deposits is investigated widely.Some researchers suggest that the emplacement of lamprophyres triggers gold mi...Lamprophyres typically appear in hydrothermal gold deposits.The relationship between lamprophyres and gold deposits is investigated widely.Some researchers suggest that the emplacement of lamprophyres triggers gold mineralization,whereas others hypothesize that the formation of lamprophyres increases the fertility of mantle sources and ore-forming fluids.K-feldspar veins,with ages between those of lamprophyres and gold deposits,appear in lamprophyres in Zhenyuan.Therefore,K-feldspar veins are ideal for investigating the relationship between lamprophyres and gold deposits.Phlogopite in K-feldspar veins has lower Mg#,Ni,and Cr contents and higher TiO2,Li,Ba,Sr,Sc,Zr,Nb,and Cs contents than phlogopite in lamprophyres.The in-situ Sr isotopic values of apatites(0.7063–0.7066)in K-feldspar veins are within the range for apatites(0.7064–0.7078)from lamprophyres.High large-ion lithophile element concentrations and low Nb and Ta concentrations in phlogopite from lamprophyres,in addition to high(87Sr/86Sr)i values of apatite(0.7064–0.7078),indicate that the magma parental to these phlogopite and apatite crystals is derived from an enriched mantle.Kfeldspar veins are genetically correlated with lamprophyres,whereas sulfide mineral assemblage and trace element compositions of pyrite in K-feldspar veins suggest that K-feldspar veins in lamprophyres are not directly related to gold mineralization of the Zhenyuan deposit.展开更多
The lamprophyres are late dykes that cut the formations hosting the gold mineralization in the Nassara deposit. They are geographically and spatially related to most orogenic gold deposits. It is with the aim of chara...The lamprophyres are late dykes that cut the formations hosting the gold mineralization in the Nassara deposit. They are geographically and spatially related to most orogenic gold deposits. It is with the aim of characterizing them and seeing their implications for exploration that this work is carried out. To achieve our objective, petrographic studies and chemical analyses of minerals (pyroxenes, amphiboles, feldspars, chromite) and geochemical analyses of total rock were carried out. These studies have enabled us to classify the Nassara lamprophyres as calc-alkaline lamprophyres of the spessartite type. The Cr, Co, Ni and Mg enrichment of these rocks would indicate a depleted mantle source, with LILE enrichment by fluids probably related to metasomatic activity. The various diagrams show that they are depleted in HREE and enriched in LREE. The high Nb/Ta ratios in our data indicate metasomatic activity probably linked to amphibole and rutile in the mantle prior to melting. The geodynamic context of spessartite-type lamprophyres indicates a signature linked to late-orogenic to post-collisional subduction. They are late-orogenic to post-collisional lamprophyres enriched in compatible elements (Cr, Ni, Co) and display a negative Ta-Nb-Ti (TNT) anomaly. The frequent association of these lamprophyre dykes with the deposits does not indicate the source of the gold for these deposits, but rather zones of crustal permeability capable of draining hydrothermal fluids at the time of emplacement. Good mapping of lamprophyre dykes, especially in shear zones, could therefore guide prospecting and identify potential zones of hydrothermal fluid circulation.展开更多
Lamprophyres, widely distributed in the Laowangzhai gold orefield, Yunnan province, China, and closely related to gold mineralization in time and space, can be distinguished into three kinds: the fresh (weakly altered...Lamprophyres, widely distributed in the Laowangzhai gold orefield, Yunnan province, China, and closely related to gold mineralization in time and space, can be distinguished into three kinds: the fresh (weakly altered ), the altered, and the mineralized lamprophyres. These lamprophyres in the orefield are similar in the range of BEE contents and REE patterns, but definitely different in parameters of LRE/HRE, NLa/Yb etc. The geochemistry of REE in fresh lamprophyre shows flat the rock is a product of different partial melting of the enriched mantle. Calculation results of mass balance of REE activity regularity in the process of alteration and mineralization of the lalnprophyres in the orefield shows that the altering fluids and mineralizing fluids contain REE, and these fluids are mainly [he products of mantle degassing and magma degassing during the lamprophyric magmatism.展开更多
The xenoliths in host rocks of hydrothermal gold deposits can generally provide much geochemical information of the deep rocks, which may have an implication for the sources of ore-forming materials. Geochronology and...The xenoliths in host rocks of hydrothermal gold deposits can generally provide much geochemical information of the deep rocks, which may have an implication for the sources of ore-forming materials. Geochronology and geochemical characteristics are reported for a granite xenolith, which is enclosed by the lamprophyre in the Zhenyuan gold deposit(Yunnan Province, SW China). This granite xenolith mainly consists of K-feldspar, quartz, and plagioclase with trace amounts of magnetite, titanite, apatite, zircon, and sulfides. Zircons from the granite xenolith yield a weighted average U-Pb age of 281.1 ± 1.3 Ma(MSWD = 2.1), which could represent the crystallization age of this granite xenolith. The Ti-in-zircon geothermometer and the Mn concentration in apatite calculate that this granite xenolith formed at 685 ± 43℃ with the logf_(O2) values ranging from NNO + 3.7 to NNO + 6.4. The zircons in the granite xenolith have a restricted range of positive ε_(Hf)(t) values ranging from +9.4 to +10.8, and the corresponding Hf TDM2 model ages range from 588 to 678 Ma. The zircon U-Pb age and the Hf isotopic compositions indicate this granite xenolith within the lamprophyre is mainly derived from partial melting of juvenile crustal rocks before the completed closure of the Ailaoshan Ocean. The pyrites in the granite xenolith have higher Bi concentrations, and lower As, Sb, and Tl concentrations than the gold-bearing pyrites of the ores in the Zhenyuan gold deposit. The low Au concentrations of the pyrites together with the ore-forming age of the Zhenyuan gold deposit(Oligocene) indicate the granite xenolith may have limited contribution to the gold mineralization of the Zhenyuan gold deposit.展开更多
Mineralogical,geochemical and isotopic(Sr and Nd) studies on the recently reported ca. 124 Ma'anorogenic lamproite' dyke from the Palanpur area, Kutch seismogenic rift zone, northwestern India, are presented. ...Mineralogical,geochemical and isotopic(Sr and Nd) studies on the recently reported ca. 124 Ma'anorogenic lamproite' dyke from the Palanpur area, Kutch seismogenic rift zone, northwestern India, are presented. We propose a new classification for the dyke as a damtjernite(ultramafic lamprophyre; UML)based on its porphyritic-panidiomorphic texture, abundance of phlogopite, presence of nepheline in the groundmass, and the composition of liquidus phases such as olivine, phlogopite, magnetite, and clinopyroxene(diopside). The Palanpur UML is primitive(Mg# =74-77),silica-undersaturated(SiO_2<40 wt.%),potassic to slightly sodic in nature, and is strikingly similar to the ~69 Ma UML dykes and sills of the Tethyan Indus suture zone, which are considered as the earliest yet known manifestations of the Deccan Large Igneous Province(LIP). Bulk-rock(^(87)Sr/^(86)Sr)_i(0.70460-0.70461) and ε_(N)d(t)(+2.56 to-0.69) of the Palanpur UML signify derivation from a slightly depleted mantle source similar to that of asthenospheric magmas such as OIB. This is further attested to by the high incompatible trace element ratios(viz., La/Ba, Nb/U, Nb/La and Ta/Yb) that are typical of plume-type magmas. However, the Neoproterozoic T_(DM) depleted mantle Nd model ages( ~655-919 Ma) also necessitate some involvement of a lithospheric mantle component in its genesis. High bulk-rock Fe_2 O_3~t and TiO_2 contents require the involvement of a fertile peridotitic mantle source, whereas high La/Yb(60-80) implies a control by residual garnet. Higher Rb/Sr and lower Ba/Rb suggest phlogopite as a residual phase and high Nb and lower La/Sm favour carbonatite, rather than silicate melt as metasomatising agent. Low degrees of partial melting of a primitive garnet lherzolite mantle can account for the observed REE patterns in the Palanpur UML. The Palanpur UML shares a temporal similarity to the Kerguelen plume-derived Rajmahal basalts and associated alkaline rocks from the eastern India. The tectonomagmatic significance of its emplacement during the mid-Cretaceous vis-a-vis various models involving the timing of eruption of the Deccan and the Rahmahal Traps and the rifting in the Kutch basin induced by far-field plate reorganization is evaluated.展开更多
Magmatic Cu-Ni sulfide deposits are generally associated with mafic-ultramafic rocks and it has not been reported that lamprophyre is one of the surrounding rocks of Cu-Ni sulfide deposits.The Dhi Samir deposit in Yem...Magmatic Cu-Ni sulfide deposits are generally associated with mafic-ultramafic rocks and it has not been reported that lamprophyre is one of the surrounding rocks of Cu-Ni sulfide deposits.The Dhi Samir deposit in Yemen,however,is a rare example of Cu-Ni deposits which are hosted in lamprophyre dikes.In this paper,comprehensive research is made on petrology,petrochemistry and isotope geochemistry for Cu-Ni-bearing rocks in the Dhi Samir area and the results show that dark rocks related to Cu-Ni orebodies are sodium-weak potassium and belong to calc-alkaline series lamprophyre,especially camptonite,characterized by enriched alkali,iron and titanium.In these rocks large-ion-lithophile elements are obviously concentrated,while high field strength elements slightly depleted,showing clear negative anomalies of Ta and Nb,and weak deficiency of Ti.TheΣREE is very high(225.67-290.05 ppm) and the REE partition curves are flat and right-inclined,featuring a LREE-enriched pattern with low negative Eu anomalies.Study of magmatic source areas indicates that the rocks have low(87Sr/86Sr) and highεNd(t),and the magmas were probably derived from the enriched mantle I(EM-I) end-member.Based on the LA-ICPMS on zircon U-Pb isotope dating,the lamprophyre in the Dhi Samir mining area has an age of 602±2.6 Ma,indicating that the rock was formed in the late Proterozoic and in an intraplate setting due to magmatism of an extensional environment in the post-Pan-Africa orogeny.展开更多
The dike swarm of lamprophyres at Pishan on the SW margin of the Tarimterrane is composed of ultra-potassic lamprophyres that have intruded into the Proterozoichornblende schists. ^(40)Ar/^(39)Ar dating data suggest t...The dike swarm of lamprophyres at Pishan on the SW margin of the Tarimterrane is composed of ultra-potassic lamprophyres that have intruded into the Proterozoichornblende schists. ^(40)Ar/^(39)Ar dating data suggest that the isochron ages for phlogopite andwhole rock separates of the lamprophyres are 231.7+-0.3 Ma and 228.5+-0.3 Ma, respectively.Geochemical data indicate that the dikes were derived from a subduction-related or metasomatizedmantle. During the Middle-Late Triassic the western Kunlun area entered the post-orogeny period, andthus the occurrence of the dike swarm in the study area may have been controlled by underplating.展开更多
The mineralogical, petrological and geochemical studies on Keliyang (克里阳) potassic dykes have been carried out to understand their rock types, the petrogenesis and the nature of their mantle sources. They arc pot...The mineralogical, petrological and geochemical studies on Keliyang (克里阳) potassic dykes have been carried out to understand their rock types, the petrogenesis and the nature of their mantle sources. They arc potassic lamprophyre, not lamproites as the previous researchers believed. In this study, the whole-rock major and trace element compositions of another 6 lamproite dykes recently discovered are reported. Major elements were determined by X-ray fluorescence spectrometry (XRF) techniques, while REE and trace elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). They can be classified into phlogopite-diopside lamprophyre, leucite-diopside lamprophyre and granular carbonatite-bearing diopside lamprophyre on the basis of their mineral components. They are all characterized by relatively low SiO2 (41.31% --44. 84% ), TIO2 (0.75%-0.86% ) and high MgO (7.30%-11.33%), K2O (4.01%-6.01%) concentrations with K2O/Na2O ratios of 2.77-12.49. In addition, they display enrichment in large-ion lithophile elements (LILEs, e. g., Rb, Sr, Ba) and LREE, but a relative depletion in high-field-strength elements (HFSEs, e.g. , Nb, Ta, Zr, Hf and Ti). They display similar chondrite-normalized REE patterns with slight negative Eu anomalies (δEu=0.64-0.82), and high initial ^87 Sr/^86Sr ratios, which resemble those of high K/Ti and Iow-Ti potassic magmas formed in subduction-related settings. Consequently, we suggest that the parental magma was generated by partial melting of the phlogopite-amphibole-bearing garnet lherzolite within the lithospheric mantle that might have been metasomatized by a potassium-bearing fluid released from a sabdaction oceanic crust.展开更多
Destruction of the North China Craton has caused extensive concern on its multiple potential mechanisms including thermal erosion,chemical erosion and delamination.It is widely accepted that thinning of the
The late Archean Dharwar Craton is an important part of the Archean and Proterozoic terrains in Peninsular India.Dharwar Craton consists of Western and Eastern Blocks,separated by the Chitradurga Shear Zone.Eastern
This paper systematically reports geochemical data of lamprophyres which are temporally andspatially related to Au mineralization in the Laowangzhai gold deposits, Yunnan Province. Majorelements show that lamprophyres...This paper systematically reports geochemical data of lamprophyres which are temporally andspatially related to Au mineralization in the Laowangzhai gold deposits, Yunnan Province. Majorelements show that lamprophyres in the orefield are alkalic series and potassic calc-alkaline lam-prophyres. Chondrite-normalized transition element patterns of the lamprophyres are "W" shapedwhich suggest that the rocks are mantle-derived. The lamprophyres are enriched in large ionlithophile elements (LlLE ), high field strength elements (HFSE ) and rare earth elements(REE), and have high 87Sr/86Sr but low 143Nd/144Nd ratios. All the characteristics above and cal-culation modelling suggest that the source of the lamprophyres is incompatible element-enrichedmetasomatic mantle.展开更多
Highly precise 40Ar-39Ar dating results demon-strate that the ages of potash-rich volcanic rocks in western Shandong Province are 114.7-124.3 Ma, and that of the lamprophyres is 119.6 Ma. The potash-rich volcanic rock...Highly precise 40Ar-39Ar dating results demon-strate that the ages of potash-rich volcanic rocks in western Shandong Province are 114.7-124.3 Ma, and that of the lamprophyres is 119.6 Ma. The potash-rich volcanic rocks have relatively high (87Sr/86Sr)i ratios ( 0.708715-0.711418) and distinctly negative εNd values ( -11.47--17.54), and are enriched in radiogenic lead (206Pb/204Pb=17.341-17.622, 207Pb/204Pb=15.525-15.538, 208Pb/204Pb=37.563-37.684). Similarly, the lamprophyres also have quite low εNd values (-11.57 - -19.64). Based on the fact that the Sr, Nd and Pb isotopic compositions of potash-rich volcanic rocks are very consistent with that of the clinopyroxene separates, and by integrating comprehensive analyses of their tectonic settings, and extensive comparisons of the Sr, Nd isotopic composi-tions with that of the related simultaneous rocks, it is con-cluded that the potash-rich volcanic rocks and lamprophyres in western Shandong Province were most possibly derived from the partial melting展开更多
Widely-distributed lamprophyres in the Laowangzhai gold deposit were associated closely with gold ores. Phlogopite ^(40)Ar/^(39)Ar dating suggests that the emplacement age of lampro-phyric magma ranges from (30.8±...Widely-distributed lamprophyres in the Laowangzhai gold deposit were associated closely with gold ores. Phlogopite ^(40)Ar/^(39)Ar dating suggests that the emplacement age of lampro-phyric magma ranges from (30.8±0.4) to (34.3±0.2) Ma, and gold mineralization took place at (26.4±0.2) Ma. PGE geochemical tracing indicates that gold in the gold deposit did not come from the primitive lamprophyric magma. The tempo-spatial paragenesis between lamprophyres and mesothermal gold deposits along the Jinsha-Red River belt may be attributed to the fact that they formed in the same tectonic setting.展开更多
A set of unique sodium lamprophyres is developed in the Cenozoic intraconti-nental extensional zone of northeastern Hunan. These lamprophyres are significantly different in major and trace elements and Sr, Nd isotopes...A set of unique sodium lamprophyres is developed in the Cenozoic intraconti-nental extensional zone of northeastern Hunan. These lamprophyres are significantly different in major and trace elements and Sr, Nd isotopes from ordinary potassic lamprophyres. The rocks are characterized as being enriched in Na2O and high in TiO2 and weakly enriched in Nb, Ta, Nd and LREE with no negative Eu anomaly. The trace elements and Sr, Nd isotopic compositions are typical of the mantle source region of oceanic island basalts (OIB). The average initial 87Sr/86Sr ratio is 0.705332, and the average initial 143Nd/144Nd ratio is 0.512650, with ?Nd(t) being +3.5–+3.9, marking a mantle source region of unique sodium lamprophyres. The lamprophyres were formed by metasomatism of the primitive mantle at the bottom of lithosphere by vola-tile-containing fluids/melts from the asthenosphere. The measured Rb-Sr isochron age of sodium lamprophyre is 136.61 Ma, representing a period in which the tectonic setting changed from compressive to extensional. Sodium lamprophyres were formed in a mantle plume tectonic set-ting characterized by mantle upwelling from the asthenosphere within the continent. As-theno-spheric mantle upwelling is the principal geodynamic factor leading to the formation of sodium lamprophyres and constraining the Yanshanian intracontinental extensional activity in northeast-ern Hunan, China.展开更多
Lamprophyre dykes that crosscut different types of ultrahigh pressure(UHP)metamorphic rocks are widely distributed in the Triassic Sulu UHP orogenic belt.Although abundant studies have been performed on these dykes,th...Lamprophyre dykes that crosscut different types of ultrahigh pressure(UHP)metamorphic rocks are widely distributed in the Triassic Sulu UHP orogenic belt.Although abundant studies have been performed on these dykes,their origin and petrogenesis remain topics of controversy.This study presents the results of a detailed field-based study of petrology,whole-rock geochemistry and zircon U-Pb and Lu-Hf isotopes on lamprophyre dykes exposed in the central Sulu UHP zone,aiming at shedding lights on their petrogenesis and providing clues on the geological evolution of eastern continental China during the Cretaceous.The lamprophyres are typically porphyritic,with phenocrysts dominantly composed of amphibole and clinopyroxene set in a lamprophyric matrix.The dykes have moderate Si O2(47.70 wt.%–60.44 wt.%),variably high Mg O(2.58 wt.%–8.28 wt.%)and Fe2 O3 T(4.88 wt.%–9.26 wt.%)contents with high Mg#of 49–66.Geochemically,they have enriched light rare earth element(REE)and flat heavy REE patterns((La/Gd)N=5.14–10.56;(Dy/Yb)N=1.43–1.54)with negligible Eu anomalies(Eu/Eu*=0.83–1.10),and they show enrichment in large ion lithophile elements(e.g.,Ba and K)but depletion in high-field strength elements(e.g.,Nb,Ti and P).In-situ zircon U-Pb geochronology reveals that the lamprophyres have concordant ages of 120–115 Ma,demonstrating that the dykes emplaced in the Early Cretaceous.These zircons have?Hf(t)values ranging from-26.0 to-11.0.Inherited zircons that occur in the dykes are dated to be Neoproterozoic,in line with the protolith ages of their host(i.e.,the UHP rocks).An integration of these data allows us to propose that the lamprophyres were generated during the Cretaceous,by melting of subcontinental lithospheric mantle-derived metasomatite with enriched chemical compositions underneath the North China Craton.The metasomatite was formed mainly by peridotite-fluid/melt reactions,with the fluids/melts mainly liberated from subducted Yangtze continental crust during the Triassic.Regional extension,lithospheric thinning and mantle upwelling caused by rollback of the subducted paleoPacific plate is considered to account for the generation of the lamprophyres as well as the extensive arc-like magmatic rocks in eastern continental China during the Early Cretaceous.展开更多
CARBONATES in lamprophyres have various occurrences. The source of CO<sub>2</sub> in lamprophyres provides animportant clue for us to understand the relationship between lamprophyres and gold mineralizatio...CARBONATES in lamprophyres have various occurrences. The source of CO<sub>2</sub> in lamprophyres provides animportant clue for us to understand the relationship between lamprophyres and gold mineralization.Demeny et al.determined the C and O isotopic composition of various carbonates from Mesozoic lamprophyres in Transdanubian Range of Hungary, and suggested that the carbonates with different occurrences were different in origin. That is to say, the CO<sub>2</sub> in lamprophyres has various sources. TheLaowangzhai gold deposits, Yunnan Province, China, is a typical orefield where lamprophyres are temporally and spatially related to gold mineralization. The CO<sub>2</sub> contents of relatively fresh lampropyres from theorefield (the range of content is 5.10%-9.56%, averaging 7.45% ) are obviously higher than that ofprimary lamprophyres (about 0.5%). Huang et al.considered that the CO<sub>2</sub> in relatively fresh lam-展开更多
Three carbonate ocelli-bearing lamprophyre dykes have been found in the Laowangzhai and Beiya gold orefields in the northern sector of the Ailaoshan gold deposit zone, Yunnan Province. Ocelli in the lamprophyre dykes ...Three carbonate ocelli-bearing lamprophyre dykes have been found in the Laowangzhai and Beiya gold orefields in the northern sector of the Ailaoshan gold deposit zone, Yunnan Province. Ocelli in the lamprophyre dykes are carbonates composed mainly of dolomite and calcite. Their trace elements, REE and C isotopic compositions are characteristic of carbonatite and the main mineral assemblages, major elements, trace elements and REE in the matrix are similar to those in the carbonate ocelli-barren lamprophyre dykes in the orefields, which are calc-alkaline lamprophyres that derived from the fertile mantle. The results indicate that the carbonate ocelli-bearing lamprophyre dykes in this area were produced at the time when the Himalayan lamprophyre magma evolved to a relatively late stage of silicate-carbonate liquid immiscibility. In the process of magmatic evolution there took place magmatic degassing with CO2 and H2O as the dominant released gases.展开更多
LAMPROPHYRES are one of the rock types which are easily subject to alteration. Alteration can not onlychange their texture and mineral assemblage, but also influence their geochemistry properties. The mostavailable da...LAMPROPHYRES are one of the rock types which are easily subject to alteration. Alteration can not onlychange their texture and mineral assemblage, but also influence their geochemistry properties. The mostavailable data show that alteration will directly influence the content of Au in lamprophyre. For example,in the Superior area of Canada and the Yilgan area of Australia relatively fresh lamprophyres are bothlow in Au contents (3.9×10<sup>-9</sup> and 1.7×10<sup>-9</sup>, respectively), but the contents of Au in altered lamprophyres from both areas are double increased (38×10<sup>-9</sup> and 20×10<sup>-9</sup> on average). Lamprophyres arewidely exposed in the Zhenyuan gold deposit, Yunnan Province and they are closely associated with goldmineralization both in space and in time. So the lamprophyres in the Zhenyuan gold deposit can be citedas the most typical example both at home and abroad. Lamprophyres in the mining district have undergonevarying-degree alteration and partly experienced mineralization. On the basis of the mass equilibrium e-展开更多
Lamprophyres are widely spread over the Laowangzhai gold orefield in northern Mt. Ailao structure zone, Yunnan Province. Lamprophyres in the orefield are temporally and spatially related to gold mineralization. Lampro...Lamprophyres are widely spread over the Laowangzhai gold orefield in northern Mt. Ailao structure zone, Yunnan Province. Lamprophyres in the orefield are temporally and spatially related to gold mineralization. Lamprophyres in the orefield have anomalous Sr and Nd isotopic compositions, e.g. the 87Sr/ 86Sr ratios (0.706 665-0.707 960, the 87Sr/ 86Sr ratio of sample YLW-44 is 0.709 041) are higher than the modern value of the original mantle (0.704 5), the 143Nd/ 144Nd ratios (0.512 463-0.512 551) are lower than the modern value of the original mantle (0.512 638), and the calculated values ε Sr>0 (28.1-63.7) and ε Nd<0 (-1.34--3.07). The results of investigation indicate that lamprophyres in the Laowangzhai gold orefield with anomalous Sr and Nd isotopic compositions would not be produced as a result of contamination of the primary magma with the isotopic features of MORB by the crust materials high 87Sr/ 86Sr ratios and low 143Nd/ 144Nd ratios in the processes of rising or in the magma chamber, but the result of metasomatism of source mantle.展开更多
In the vicinity of Konya (Turkey),mafic,micro-porphyritic sub-volcanic rocks intrude into the Mesozoic units,which represents the only example of such a rock type in the region.40Ar/39Ar dating of two whole rock sam...In the vicinity of Konya (Turkey),mafic,micro-porphyritic sub-volcanic rocks intrude into the Mesozoic units,which represents the only example of such a rock type in the region.40Ar/39Ar dating of two whole rock samples from the sub-volcanics gave ages of 13.72±0.13 and 12.40±0.11 Ma,suggesting temporal association to the Late Miocene-Pliocene high-K calc-alkaline volcanism in the region.The mineral chemistry and geochemical data permit us to classify the rocks as "minette" lamprophyres.They include diopside and phlogopite phenocrysts in a microcrystalline groundmass composed of sanidine,phlogopite,diopside and titano-magnetite.Segregation and ocelli-like globular structures occur commonly in the samples.In terms of major elements,the lamprophyres are calcalkaline,and potassic to ultrapotassic rocks.All the lamprophyres display strong enrichments in LILE (Rb,Ba,K,Sr),radiogenic elements (Th,U) and LREE (La,Ce) and prominent negative Nb,Ta,and Ti anomalies on primordial mantle-normalized trace element diagrams.Geochemical data suggest that the lamprophyres and high-K calc-alkaline rocks in the region derived from a subduction-modified lithospheric mantle source affected by different metasomatic events.Lamprophyric magmatism sourced phlogopite-bearing veins generated by sediment-related metasomatism via subduction,but high-K calc-alkaline magmas are possibly derived from a mantle source affected by fluid-rich metasomatism.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41973045)Basic Science and Technology Research Funding of the CAGS(Grant No.JKYZD202312)+1 种基金the National Key Research and Development Project of China(Grant No.2022YFF0800903)National Natural Science Foundation of China(Grant Nos.41802113,42073053,42273073 and 42261144669).
文摘Lamprophyres typically appear in hydrothermal gold deposits.The relationship between lamprophyres and gold deposits is investigated widely.Some researchers suggest that the emplacement of lamprophyres triggers gold mineralization,whereas others hypothesize that the formation of lamprophyres increases the fertility of mantle sources and ore-forming fluids.K-feldspar veins,with ages between those of lamprophyres and gold deposits,appear in lamprophyres in Zhenyuan.Therefore,K-feldspar veins are ideal for investigating the relationship between lamprophyres and gold deposits.Phlogopite in K-feldspar veins has lower Mg#,Ni,and Cr contents and higher TiO2,Li,Ba,Sr,Sc,Zr,Nb,and Cs contents than phlogopite in lamprophyres.The in-situ Sr isotopic values of apatites(0.7063–0.7066)in K-feldspar veins are within the range for apatites(0.7064–0.7078)from lamprophyres.High large-ion lithophile element concentrations and low Nb and Ta concentrations in phlogopite from lamprophyres,in addition to high(87Sr/86Sr)i values of apatite(0.7064–0.7078),indicate that the magma parental to these phlogopite and apatite crystals is derived from an enriched mantle.Kfeldspar veins are genetically correlated with lamprophyres,whereas sulfide mineral assemblage and trace element compositions of pyrite in K-feldspar veins suggest that K-feldspar veins in lamprophyres are not directly related to gold mineralization of the Zhenyuan deposit.
文摘The lamprophyres are late dykes that cut the formations hosting the gold mineralization in the Nassara deposit. They are geographically and spatially related to most orogenic gold deposits. It is with the aim of characterizing them and seeing their implications for exploration that this work is carried out. To achieve our objective, petrographic studies and chemical analyses of minerals (pyroxenes, amphiboles, feldspars, chromite) and geochemical analyses of total rock were carried out. These studies have enabled us to classify the Nassara lamprophyres as calc-alkaline lamprophyres of the spessartite type. The Cr, Co, Ni and Mg enrichment of these rocks would indicate a depleted mantle source, with LILE enrichment by fluids probably related to metasomatic activity. The various diagrams show that they are depleted in HREE and enriched in LREE. The high Nb/Ta ratios in our data indicate metasomatic activity probably linked to amphibole and rutile in the mantle prior to melting. The geodynamic context of spessartite-type lamprophyres indicates a signature linked to late-orogenic to post-collisional subduction. They are late-orogenic to post-collisional lamprophyres enriched in compatible elements (Cr, Ni, Co) and display a negative Ta-Nb-Ti (TNT) anomaly. The frequent association of these lamprophyre dykes with the deposits does not indicate the source of the gold for these deposits, but rather zones of crustal permeability capable of draining hydrothermal fluids at the time of emplacement. Good mapping of lamprophyre dykes, especially in shear zones, could therefore guide prospecting and identify potential zones of hydrothermal fluid circulation.
基金the National Outstanding Young Scientist Foundation !49625304 the Ministry of Science and Technologyof China!95-pre-39
文摘Lamprophyres, widely distributed in the Laowangzhai gold orefield, Yunnan province, China, and closely related to gold mineralization in time and space, can be distinguished into three kinds: the fresh (weakly altered ), the altered, and the mineralized lamprophyres. These lamprophyres in the orefield are similar in the range of BEE contents and REE patterns, but definitely different in parameters of LRE/HRE, NLa/Yb etc. The geochemistry of REE in fresh lamprophyre shows flat the rock is a product of different partial melting of the enriched mantle. Calculation results of mass balance of REE activity regularity in the process of alteration and mineralization of the lalnprophyres in the orefield shows that the altering fluids and mineralizing fluids contain REE, and these fluids are mainly [he products of mantle degassing and magma degassing during the lamprophyric magmatism.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91962105, 41802113)the Fundamental Research Funds for the Central Universities (Grant No.2019B08214)a grant from Jiangsu Provincial “Double Innovation Doctors” Program (Grant No.(2020) 30462)。
文摘The xenoliths in host rocks of hydrothermal gold deposits can generally provide much geochemical information of the deep rocks, which may have an implication for the sources of ore-forming materials. Geochronology and geochemical characteristics are reported for a granite xenolith, which is enclosed by the lamprophyre in the Zhenyuan gold deposit(Yunnan Province, SW China). This granite xenolith mainly consists of K-feldspar, quartz, and plagioclase with trace amounts of magnetite, titanite, apatite, zircon, and sulfides. Zircons from the granite xenolith yield a weighted average U-Pb age of 281.1 ± 1.3 Ma(MSWD = 2.1), which could represent the crystallization age of this granite xenolith. The Ti-in-zircon geothermometer and the Mn concentration in apatite calculate that this granite xenolith formed at 685 ± 43℃ with the logf_(O2) values ranging from NNO + 3.7 to NNO + 6.4. The zircons in the granite xenolith have a restricted range of positive ε_(Hf)(t) values ranging from +9.4 to +10.8, and the corresponding Hf TDM2 model ages range from 588 to 678 Ma. The zircon U-Pb age and the Hf isotopic compositions indicate this granite xenolith within the lamprophyre is mainly derived from partial melting of juvenile crustal rocks before the completed closure of the Ailaoshan Ocean. The pyrites in the granite xenolith have higher Bi concentrations, and lower As, Sb, and Tl concentrations than the gold-bearing pyrites of the ores in the Zhenyuan gold deposit. The low Au concentrations of the pyrites together with the ore-forming age of the Zhenyuan gold deposit(Oligocene) indicate the granite xenolith may have limited contribution to the gold mineralization of the Zhenyuan gold deposit.
文摘Mineralogical,geochemical and isotopic(Sr and Nd) studies on the recently reported ca. 124 Ma'anorogenic lamproite' dyke from the Palanpur area, Kutch seismogenic rift zone, northwestern India, are presented. We propose a new classification for the dyke as a damtjernite(ultramafic lamprophyre; UML)based on its porphyritic-panidiomorphic texture, abundance of phlogopite, presence of nepheline in the groundmass, and the composition of liquidus phases such as olivine, phlogopite, magnetite, and clinopyroxene(diopside). The Palanpur UML is primitive(Mg# =74-77),silica-undersaturated(SiO_2<40 wt.%),potassic to slightly sodic in nature, and is strikingly similar to the ~69 Ma UML dykes and sills of the Tethyan Indus suture zone, which are considered as the earliest yet known manifestations of the Deccan Large Igneous Province(LIP). Bulk-rock(^(87)Sr/^(86)Sr)_i(0.70460-0.70461) and ε_(N)d(t)(+2.56 to-0.69) of the Palanpur UML signify derivation from a slightly depleted mantle source similar to that of asthenospheric magmas such as OIB. This is further attested to by the high incompatible trace element ratios(viz., La/Ba, Nb/U, Nb/La and Ta/Yb) that are typical of plume-type magmas. However, the Neoproterozoic T_(DM) depleted mantle Nd model ages( ~655-919 Ma) also necessitate some involvement of a lithospheric mantle component in its genesis. High bulk-rock Fe_2 O_3~t and TiO_2 contents require the involvement of a fertile peridotitic mantle source, whereas high La/Yb(60-80) implies a control by residual garnet. Higher Rb/Sr and lower Ba/Rb suggest phlogopite as a residual phase and high Nb and lower La/Sm favour carbonatite, rather than silicate melt as metasomatising agent. Low degrees of partial melting of a primitive garnet lherzolite mantle can account for the observed REE patterns in the Palanpur UML. The Palanpur UML shares a temporal similarity to the Kerguelen plume-derived Rajmahal basalts and associated alkaline rocks from the eastern India. The tectonomagmatic significance of its emplacement during the mid-Cretaceous vis-a-vis various models involving the timing of eruption of the Deccan and the Rahmahal Traps and the rifting in the Kutch basin induced by far-field plate reorganization is evaluated.
文摘Magmatic Cu-Ni sulfide deposits are generally associated with mafic-ultramafic rocks and it has not been reported that lamprophyre is one of the surrounding rocks of Cu-Ni sulfide deposits.The Dhi Samir deposit in Yemen,however,is a rare example of Cu-Ni deposits which are hosted in lamprophyre dikes.In this paper,comprehensive research is made on petrology,petrochemistry and isotope geochemistry for Cu-Ni-bearing rocks in the Dhi Samir area and the results show that dark rocks related to Cu-Ni orebodies are sodium-weak potassium and belong to calc-alkaline series lamprophyre,especially camptonite,characterized by enriched alkali,iron and titanium.In these rocks large-ion-lithophile elements are obviously concentrated,while high field strength elements slightly depleted,showing clear negative anomalies of Ta and Nb,and weak deficiency of Ti.TheΣREE is very high(225.67-290.05 ppm) and the REE partition curves are flat and right-inclined,featuring a LREE-enriched pattern with low negative Eu anomalies.Study of magmatic source areas indicates that the rocks have low(87Sr/86Sr) and highεNd(t),and the magmas were probably derived from the enriched mantle I(EM-I) end-member.Based on the LA-ICPMS on zircon U-Pb isotope dating,the lamprophyre in the Dhi Samir mining area has an age of 602±2.6 Ma,indicating that the rock was formed in the late Proterozoic and in an intraplate setting due to magmatism of an extensional environment in the post-Pan-Africa orogeny.
文摘The dike swarm of lamprophyres at Pishan on the SW margin of the Tarimterrane is composed of ultra-potassic lamprophyres that have intruded into the Proterozoichornblende schists. ^(40)Ar/^(39)Ar dating data suggest that the isochron ages for phlogopite andwhole rock separates of the lamprophyres are 231.7+-0.3 Ma and 228.5+-0.3 Ma, respectively.Geochemical data indicate that the dikes were derived from a subduction-related or metasomatizedmantle. During the Middle-Late Triassic the western Kunlun area entered the post-orogeny period, andthus the occurrence of the dike swarm in the study area may have been controlled by underplating.
基金This paper is supported by the National Natural Science Foundationof China (No .40072061) the Programfor New Century ExcellentTalents in University (No. NCET-04-0728) the Fund of the K-ey Subject on Mineral Prospecting and Exploration Ⅰin Xinjiang .
文摘The mineralogical, petrological and geochemical studies on Keliyang (克里阳) potassic dykes have been carried out to understand their rock types, the petrogenesis and the nature of their mantle sources. They arc potassic lamprophyre, not lamproites as the previous researchers believed. In this study, the whole-rock major and trace element compositions of another 6 lamproite dykes recently discovered are reported. Major elements were determined by X-ray fluorescence spectrometry (XRF) techniques, while REE and trace elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). They can be classified into phlogopite-diopside lamprophyre, leucite-diopside lamprophyre and granular carbonatite-bearing diopside lamprophyre on the basis of their mineral components. They are all characterized by relatively low SiO2 (41.31% --44. 84% ), TIO2 (0.75%-0.86% ) and high MgO (7.30%-11.33%), K2O (4.01%-6.01%) concentrations with K2O/Na2O ratios of 2.77-12.49. In addition, they display enrichment in large-ion lithophile elements (LILEs, e. g., Rb, Sr, Ba) and LREE, but a relative depletion in high-field-strength elements (HFSEs, e.g. , Nb, Ta, Zr, Hf and Ti). They display similar chondrite-normalized REE patterns with slight negative Eu anomalies (δEu=0.64-0.82), and high initial ^87 Sr/^86Sr ratios, which resemble those of high K/Ti and Iow-Ti potassic magmas formed in subduction-related settings. Consequently, we suggest that the parental magma was generated by partial melting of the phlogopite-amphibole-bearing garnet lherzolite within the lithospheric mantle that might have been metasomatized by a potassium-bearing fluid released from a sabdaction oceanic crust.
文摘Destruction of the North China Craton has caused extensive concern on its multiple potential mechanisms including thermal erosion,chemical erosion and delamination.It is widely accepted that thinning of the
文摘The late Archean Dharwar Craton is an important part of the Archean and Proterozoic terrains in Peninsular India.Dharwar Craton consists of Western and Eastern Blocks,separated by the Chitradurga Shear Zone.Eastern
文摘This paper systematically reports geochemical data of lamprophyres which are temporally andspatially related to Au mineralization in the Laowangzhai gold deposits, Yunnan Province. Majorelements show that lamprophyres in the orefield are alkalic series and potassic calc-alkaline lam-prophyres. Chondrite-normalized transition element patterns of the lamprophyres are "W" shapedwhich suggest that the rocks are mantle-derived. The lamprophyres are enriched in large ionlithophile elements (LlLE ), high field strength elements (HFSE ) and rare earth elements(REE), and have high 87Sr/86Sr but low 143Nd/144Nd ratios. All the characteristics above and cal-culation modelling suggest that the source of the lamprophyres is incompatible element-enrichedmetasomatic mantle.
基金This work was supported by the Major State Basic Research Program (Grant No. G1999043202) the National Natural Science Foundation of China (Grant No. 49872028).
文摘Highly precise 40Ar-39Ar dating results demon-strate that the ages of potash-rich volcanic rocks in western Shandong Province are 114.7-124.3 Ma, and that of the lamprophyres is 119.6 Ma. The potash-rich volcanic rocks have relatively high (87Sr/86Sr)i ratios ( 0.708715-0.711418) and distinctly negative εNd values ( -11.47--17.54), and are enriched in radiogenic lead (206Pb/204Pb=17.341-17.622, 207Pb/204Pb=15.525-15.538, 208Pb/204Pb=37.563-37.684). Similarly, the lamprophyres also have quite low εNd values (-11.57 - -19.64). Based on the fact that the Sr, Nd and Pb isotopic compositions of potash-rich volcanic rocks are very consistent with that of the clinopyroxene separates, and by integrating comprehensive analyses of their tectonic settings, and extensive comparisons of the Sr, Nd isotopic composi-tions with that of the related simultaneous rocks, it is con-cluded that the potash-rich volcanic rocks and lamprophyres in western Shandong Province were most possibly derived from the partial melting
基金the Chinese National Key Project for Basic Research on Tibetan Plateau (G1998040800). the National Natural Science Foundation of China (Grant Nos. 49972026. 49472100). the National Climbing Project (95-Y-25), CAS's Projects (KZCX2-101, KZ952-J1-408) and
文摘Widely-distributed lamprophyres in the Laowangzhai gold deposit were associated closely with gold ores. Phlogopite ^(40)Ar/^(39)Ar dating suggests that the emplacement age of lampro-phyric magma ranges from (30.8±0.4) to (34.3±0.2) Ma, and gold mineralization took place at (26.4±0.2) Ma. PGE geochemical tracing indicates that gold in the gold deposit did not come from the primitive lamprophyric magma. The tempo-spatial paragenesis between lamprophyres and mesothermal gold deposits along the Jinsha-Red River belt may be attributed to the fact that they formed in the same tectonic setting.
文摘A set of unique sodium lamprophyres is developed in the Cenozoic intraconti-nental extensional zone of northeastern Hunan. These lamprophyres are significantly different in major and trace elements and Sr, Nd isotopes from ordinary potassic lamprophyres. The rocks are characterized as being enriched in Na2O and high in TiO2 and weakly enriched in Nb, Ta, Nd and LREE with no negative Eu anomaly. The trace elements and Sr, Nd isotopic compositions are typical of the mantle source region of oceanic island basalts (OIB). The average initial 87Sr/86Sr ratio is 0.705332, and the average initial 143Nd/144Nd ratio is 0.512650, with ?Nd(t) being +3.5–+3.9, marking a mantle source region of unique sodium lamprophyres. The lamprophyres were formed by metasomatism of the primitive mantle at the bottom of lithosphere by vola-tile-containing fluids/melts from the asthenosphere. The measured Rb-Sr isochron age of sodium lamprophyre is 136.61 Ma, representing a period in which the tectonic setting changed from compressive to extensional. Sodium lamprophyres were formed in a mantle plume tectonic set-ting characterized by mantle upwelling from the asthenosphere within the continent. As-theno-spheric mantle upwelling is the principal geodynamic factor leading to the formation of sodium lamprophyres and constraining the Yanshanian intracontinental extensional activity in northeast-ern Hunan, China.
基金the National Natural Science Foundation of China and Shandong Province(Nos.ZR2018BD019,41572182,41803031,41272225)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Wuhan)(No.MSFGPMR02-3)the Youth Innovation Team Development Plan of the Universities in Shandong Province。
文摘Lamprophyre dykes that crosscut different types of ultrahigh pressure(UHP)metamorphic rocks are widely distributed in the Triassic Sulu UHP orogenic belt.Although abundant studies have been performed on these dykes,their origin and petrogenesis remain topics of controversy.This study presents the results of a detailed field-based study of petrology,whole-rock geochemistry and zircon U-Pb and Lu-Hf isotopes on lamprophyre dykes exposed in the central Sulu UHP zone,aiming at shedding lights on their petrogenesis and providing clues on the geological evolution of eastern continental China during the Cretaceous.The lamprophyres are typically porphyritic,with phenocrysts dominantly composed of amphibole and clinopyroxene set in a lamprophyric matrix.The dykes have moderate Si O2(47.70 wt.%–60.44 wt.%),variably high Mg O(2.58 wt.%–8.28 wt.%)and Fe2 O3 T(4.88 wt.%–9.26 wt.%)contents with high Mg#of 49–66.Geochemically,they have enriched light rare earth element(REE)and flat heavy REE patterns((La/Gd)N=5.14–10.56;(Dy/Yb)N=1.43–1.54)with negligible Eu anomalies(Eu/Eu*=0.83–1.10),and they show enrichment in large ion lithophile elements(e.g.,Ba and K)but depletion in high-field strength elements(e.g.,Nb,Ti and P).In-situ zircon U-Pb geochronology reveals that the lamprophyres have concordant ages of 120–115 Ma,demonstrating that the dykes emplaced in the Early Cretaceous.These zircons have?Hf(t)values ranging from-26.0 to-11.0.Inherited zircons that occur in the dykes are dated to be Neoproterozoic,in line with the protolith ages of their host(i.e.,the UHP rocks).An integration of these data allows us to propose that the lamprophyres were generated during the Cretaceous,by melting of subcontinental lithospheric mantle-derived metasomatite with enriched chemical compositions underneath the North China Craton.The metasomatite was formed mainly by peridotite-fluid/melt reactions,with the fluids/melts mainly liberated from subducted Yangtze continental crust during the Triassic.Regional extension,lithospheric thinning and mantle upwelling caused by rollback of the subducted paleoPacific plate is considered to account for the generation of the lamprophyres as well as the extensive arc-like magmatic rocks in eastern continental China during the Early Cretaceous.
文摘CARBONATES in lamprophyres have various occurrences. The source of CO<sub>2</sub> in lamprophyres provides animportant clue for us to understand the relationship between lamprophyres and gold mineralization.Demeny et al.determined the C and O isotopic composition of various carbonates from Mesozoic lamprophyres in Transdanubian Range of Hungary, and suggested that the carbonates with different occurrences were different in origin. That is to say, the CO<sub>2</sub> in lamprophyres has various sources. TheLaowangzhai gold deposits, Yunnan Province, China, is a typical orefield where lamprophyres are temporally and spatially related to gold mineralization. The CO<sub>2</sub> contents of relatively fresh lampropyres from theorefield (the range of content is 5.10%-9.56%, averaging 7.45% ) are obviously higher than that ofprimary lamprophyres (about 0.5%). Huang et al.considered that the CO<sub>2</sub> in relatively fresh lam-
基金This work was supported by the State Basic Research and Development Program (Grant No.1999043203) the State Climbing Program (Grant No. 95-yu-39) and the Innovational Program of the Chinese Academy of Sciences (Grant No. KZCX 2-101). Geological fiel
文摘Three carbonate ocelli-bearing lamprophyre dykes have been found in the Laowangzhai and Beiya gold orefields in the northern sector of the Ailaoshan gold deposit zone, Yunnan Province. Ocelli in the lamprophyre dykes are carbonates composed mainly of dolomite and calcite. Their trace elements, REE and C isotopic compositions are characteristic of carbonatite and the main mineral assemblages, major elements, trace elements and REE in the matrix are similar to those in the carbonate ocelli-barren lamprophyre dykes in the orefields, which are calc-alkaline lamprophyres that derived from the fertile mantle. The results indicate that the carbonate ocelli-bearing lamprophyre dykes in this area were produced at the time when the Himalayan lamprophyre magma evolved to a relatively late stage of silicate-carbonate liquid immiscibility. In the process of magmatic evolution there took place magmatic degassing with CO2 and H2O as the dominant released gases.
文摘LAMPROPHYRES are one of the rock types which are easily subject to alteration. Alteration can not onlychange their texture and mineral assemblage, but also influence their geochemistry properties. The mostavailable data show that alteration will directly influence the content of Au in lamprophyre. For example,in the Superior area of Canada and the Yilgan area of Australia relatively fresh lamprophyres are bothlow in Au contents (3.9×10<sup>-9</sup> and 1.7×10<sup>-9</sup>, respectively), but the contents of Au in altered lamprophyres from both areas are double increased (38×10<sup>-9</sup> and 20×10<sup>-9</sup> on average). Lamprophyres arewidely exposed in the Zhenyuan gold deposit, Yunnan Province and they are closely associated with goldmineralization both in space and in time. So the lamprophyres in the Zhenyuan gold deposit can be citedas the most typical example both at home and abroad. Lamprophyres in the mining district have undergonevarying-degree alteration and partly experienced mineralization. On the basis of the mass equilibrium e-
文摘Lamprophyres are widely spread over the Laowangzhai gold orefield in northern Mt. Ailao structure zone, Yunnan Province. Lamprophyres in the orefield are temporally and spatially related to gold mineralization. Lamprophyres in the orefield have anomalous Sr and Nd isotopic compositions, e.g. the 87Sr/ 86Sr ratios (0.706 665-0.707 960, the 87Sr/ 86Sr ratio of sample YLW-44 is 0.709 041) are higher than the modern value of the original mantle (0.704 5), the 143Nd/ 144Nd ratios (0.512 463-0.512 551) are lower than the modern value of the original mantle (0.512 638), and the calculated values ε Sr>0 (28.1-63.7) and ε Nd<0 (-1.34--3.07). The results of investigation indicate that lamprophyres in the Laowangzhai gold orefield with anomalous Sr and Nd isotopic compositions would not be produced as a result of contamination of the primary magma with the isotopic features of MORB by the crust materials high 87Sr/ 86Sr ratios and low 143Nd/ 144Nd ratios in the processes of rising or in the magma chamber, but the result of metasomatism of source mantle.
基金supported by the Seluk University Scientific Research Projects Coordination (Project No:11201041)
文摘In the vicinity of Konya (Turkey),mafic,micro-porphyritic sub-volcanic rocks intrude into the Mesozoic units,which represents the only example of such a rock type in the region.40Ar/39Ar dating of two whole rock samples from the sub-volcanics gave ages of 13.72±0.13 and 12.40±0.11 Ma,suggesting temporal association to the Late Miocene-Pliocene high-K calc-alkaline volcanism in the region.The mineral chemistry and geochemical data permit us to classify the rocks as "minette" lamprophyres.They include diopside and phlogopite phenocrysts in a microcrystalline groundmass composed of sanidine,phlogopite,diopside and titano-magnetite.Segregation and ocelli-like globular structures occur commonly in the samples.In terms of major elements,the lamprophyres are calcalkaline,and potassic to ultrapotassic rocks.All the lamprophyres display strong enrichments in LILE (Rb,Ba,K,Sr),radiogenic elements (Th,U) and LREE (La,Ce) and prominent negative Nb,Ta,and Ti anomalies on primordial mantle-normalized trace element diagrams.Geochemical data suggest that the lamprophyres and high-K calc-alkaline rocks in the region derived from a subduction-modified lithospheric mantle source affected by different metasomatic events.Lamprophyric magmatism sourced phlogopite-bearing veins generated by sediment-related metasomatism via subduction,but high-K calc-alkaline magmas are possibly derived from a mantle source affected by fluid-rich metasomatism.