Structure Activity-Relationships (SARs) of the five possible isomers of RuCl<sub>2</sub>(Azpy)<sub>2</sub> were predicted thanks to DFT method. Azpy stands for 2-phenylazopyridine and the struc...Structure Activity-Relationships (SARs) of the five possible isomers of RuCl<sub>2</sub>(Azpy)<sub>2</sub> were predicted thanks to DFT method. Azpy stands for 2-phenylazopyridine and the structure of the isomers α-RuCl<sub>2</sub>(Azpy)<sub>2</sub>, β-RuCl<sub>2</sub>(Azpy)<sub>2</sub>, γ-RuCl2(Azpy)2, δ-RuCl<sub>2</sub>(Azpy)<sub>2</sub> and ε-RuCl<sub>2</sub>(Azpy)<sub>2</sub> call respectively α-Cl, β-Cl, γ-Cl, δ-Cl and ε-Cl are defined according to chlorine atoms orientations. Hence, they are divided into two groups. In the first group comprising α-Cl, β-Cl and ε-Cl, both chlorine atoms are in cis position and Azpy ligands are intervertical. Whereas the two others isomers (γ-Cl and δ-Cl), they form the second group. Here, both chlorine are in trans position and Azpy are planar. The five synthesized isomers were investigated as potential antitumor agents. Then, regarding the DNA, its bases are stacked by pair. Therefore, complexes are assumed to insert and to stack on them through intercalative mode. So the electronic and geometric structures become more important to describe their SARs. Consequently, group 2 regarding γ-Cl and δ-Cl presents the best structure to allow intercalation between DNA base-pairs. Besides, the energy order of the lower unoccupied molecular orbital (LUMO) of the isomers is ELUMO(β-Cl) > ELUMO(α-Cl) > ELUMO(ε-Cl) > ELUMO(γ-Cl) > ELUMO(δ-Cl). The energy gap between LUMO and HOMO was also sorted as Δ(L-H)(β-Cl) > Δ(L-H)(α-Cl) > Δ(L-H)(ε-Cl) > Δ(L-H)(γ-Cl) > Δ(L-H)(δ-Cl). In addition, the total dipole moment was classified as μ(ε-Cl) > μ(β-Cl) > μ(α-Cl) > μ(γ-Cl) > μ(δ-Cl). Finally, net charge of the ligand Azpy was also classified as QL(δ-Cl) > QL(γ-Cl) > QL(ε-Cl) > QL(α-Cl) > QL(β-Cl). All those parameters show that δ-Cl isomer displays the highest activity as antitumor drug when intercalating between the DNA basepairs Cytosine-Guanine/Cytosine-Guanine (CG/CG).展开更多
The electronic structure and electronic absorption spectra of binuclear Au(Ⅰ) complexes with bidentate phophines and a bidentate ylid ligand have been studied using quasirelativistic pseudopotential ab initio cal...The electronic structure and electronic absorption spectra of binuclear Au(Ⅰ) complexes with bidentate phophines and a bidentate ylid ligand have been studied using quasirelativistic pseudopotential ab initio calculations at the HF and MP2 levels by the LANL2DZ basis sets. The electronic properties of the spectral transition and Au(Ⅰ)—Au(Ⅰ) interaction were also discussed.展开更多
The molecular structures of fifteen possible 2-thioxanthine(2TX) complexes with one Hg^2+ and two Cl-ions were fully optimized using density functional theory B3PW91/6-311++G^** method. The effective pseudo pot...The molecular structures of fifteen possible 2-thioxanthine(2TX) complexes with one Hg^2+ and two Cl-ions were fully optimized using density functional theory B3PW91/6-311++G^** method. The effective pseudo potential LANL2DZ basis set was used for metal Hg^2+ion. The vibrational analysis was also carried out at the same level. The bond lengths, bond angles, zero point energies, Gibbs free energies, thermodynamic energies and relative energies of all the complexes were obtained. The NBO analysis for natural charge and the second order perturbation energy values was carried out for three stable complexes and the IR spectroscopy of the two complexes was assigned to the experimental data. The results show that the 2-thioxanthine complexes with one Hg^2+ and two Cl^-ions were formed and the complexes resulting from the thione tautomer are more stable than that of the thiol ones. The order of three complexes with relative lower energy is 2TX(1,3,7)-Hg^2+-2, 2 TX(1,3,7)-Hg^2+-1 and 2 TX(1,3,9)-Hg^2+. The calculated IR spectroscopy of the two complexes agreed with the experimental data.展开更多
Platinum-based antitumour drug ZD0473 was designed to reduce the cisplatin resistance to the tumor cells. In this paper, the mixed method of molecular mechanics and quantum chemistry, HF/lanl2dz// MM/uff and B3LYP/lan...Platinum-based antitumour drug ZD0473 was designed to reduce the cisplatin resistance to the tumor cells. In this paper, the mixed method of molecular mechanics and quantum chemistry, HF/lanl2dz// MM/uff and B3LYP/lanl2dz//6-31G*, are used to investigate the differences between four types of GG, 3′AG5′, 3′GA5′, and AA complexes, which are formed from four discrete DNA fragments recognized by ZD0473 and cisplatin. The results show that the binding interaction of both ZD0473 and cisplatin drugs with the GG base pair is much stronger than with other base pairs, namely the recognition capability of such drugs to the GG base pair is more considerable. Moreover, the interaction of four complexes of ZD0473 with DNA fragments is stronger than that of cisplatin with corresponding DNA fragments, which indicates the stronger binding capability of ZD0473 with DNA fragments and high antitumour activity of ZD0473. The main reason for easier forming of 3′GA5′ complex than the 3′AG5′ one is that the drug molecule prefers to bind with a single G base to form a monoligand compound firstly; then the con- figuration transformation from such monoligand compound to the bi-ligand one is limited.展开更多
文摘Structure Activity-Relationships (SARs) of the five possible isomers of RuCl<sub>2</sub>(Azpy)<sub>2</sub> were predicted thanks to DFT method. Azpy stands for 2-phenylazopyridine and the structure of the isomers α-RuCl<sub>2</sub>(Azpy)<sub>2</sub>, β-RuCl<sub>2</sub>(Azpy)<sub>2</sub>, γ-RuCl2(Azpy)2, δ-RuCl<sub>2</sub>(Azpy)<sub>2</sub> and ε-RuCl<sub>2</sub>(Azpy)<sub>2</sub> call respectively α-Cl, β-Cl, γ-Cl, δ-Cl and ε-Cl are defined according to chlorine atoms orientations. Hence, they are divided into two groups. In the first group comprising α-Cl, β-Cl and ε-Cl, both chlorine atoms are in cis position and Azpy ligands are intervertical. Whereas the two others isomers (γ-Cl and δ-Cl), they form the second group. Here, both chlorine are in trans position and Azpy are planar. The five synthesized isomers were investigated as potential antitumor agents. Then, regarding the DNA, its bases are stacked by pair. Therefore, complexes are assumed to insert and to stack on them through intercalative mode. So the electronic and geometric structures become more important to describe their SARs. Consequently, group 2 regarding γ-Cl and δ-Cl presents the best structure to allow intercalation between DNA base-pairs. Besides, the energy order of the lower unoccupied molecular orbital (LUMO) of the isomers is ELUMO(β-Cl) > ELUMO(α-Cl) > ELUMO(ε-Cl) > ELUMO(γ-Cl) > ELUMO(δ-Cl). The energy gap between LUMO and HOMO was also sorted as Δ(L-H)(β-Cl) > Δ(L-H)(α-Cl) > Δ(L-H)(ε-Cl) > Δ(L-H)(γ-Cl) > Δ(L-H)(δ-Cl). In addition, the total dipole moment was classified as μ(ε-Cl) > μ(β-Cl) > μ(α-Cl) > μ(γ-Cl) > μ(δ-Cl). Finally, net charge of the ligand Azpy was also classified as QL(δ-Cl) > QL(γ-Cl) > QL(ε-Cl) > QL(α-Cl) > QL(β-Cl). All those parameters show that δ-Cl isomer displays the highest activity as antitumor drug when intercalating between the DNA basepairs Cytosine-Guanine/Cytosine-Guanine (CG/CG).
文摘The electronic structure and electronic absorption spectra of binuclear Au(Ⅰ) complexes with bidentate phophines and a bidentate ylid ligand have been studied using quasirelativistic pseudopotential ab initio calculations at the HF and MP2 levels by the LANL2DZ basis sets. The electronic properties of the spectral transition and Au(Ⅰ)—Au(Ⅰ) interaction were also discussed.
基金supported by the National Natural Science Foundation of China(No.21643014)the Special Natural Science Foundation of Science and Technology Bureau of Xi’an City Government(No.2016CXWL02)
文摘The molecular structures of fifteen possible 2-thioxanthine(2TX) complexes with one Hg^2+ and two Cl-ions were fully optimized using density functional theory B3PW91/6-311++G^** method. The effective pseudo potential LANL2DZ basis set was used for metal Hg^2+ion. The vibrational analysis was also carried out at the same level. The bond lengths, bond angles, zero point energies, Gibbs free energies, thermodynamic energies and relative energies of all the complexes were obtained. The NBO analysis for natural charge and the second order perturbation energy values was carried out for three stable complexes and the IR spectroscopy of the two complexes was assigned to the experimental data. The results show that the 2-thioxanthine complexes with one Hg^2+ and two Cl^-ions were formed and the complexes resulting from the thione tautomer are more stable than that of the thiol ones. The order of three complexes with relative lower energy is 2TX(1,3,7)-Hg^2+-2, 2 TX(1,3,7)-Hg^2+-1 and 2 TX(1,3,9)-Hg^2+. The calculated IR spectroscopy of the two complexes agreed with the experimental data.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20673011, 20231010, 20631020)the Major State Basic Research Development Programs (Grant No. G2004CB719900)
文摘Platinum-based antitumour drug ZD0473 was designed to reduce the cisplatin resistance to the tumor cells. In this paper, the mixed method of molecular mechanics and quantum chemistry, HF/lanl2dz// MM/uff and B3LYP/lanl2dz//6-31G*, are used to investigate the differences between four types of GG, 3′AG5′, 3′GA5′, and AA complexes, which are formed from four discrete DNA fragments recognized by ZD0473 and cisplatin. The results show that the binding interaction of both ZD0473 and cisplatin drugs with the GG base pair is much stronger than with other base pairs, namely the recognition capability of such drugs to the GG base pair is more considerable. Moreover, the interaction of four complexes of ZD0473 with DNA fragments is stronger than that of cisplatin with corresponding DNA fragments, which indicates the stronger binding capability of ZD0473 with DNA fragments and high antitumour activity of ZD0473. The main reason for easier forming of 3′GA5′ complex than the 3′AG5′ one is that the drug molecule prefers to bind with a single G base to form a monoligand compound firstly; then the con- figuration transformation from such monoligand compound to the bi-ligand one is limited.