In the Loess Plateau of China,land-use pattern is a major factor in controlling underlying biological processes.Additionally,the process of land-use pattern was accompanied by abandoned lands,potentially impacting soi...In the Loess Plateau of China,land-use pattern is a major factor in controlling underlying biological processes.Additionally,the process of land-use pattern was accompanied by abandoned lands,potentially impacting soil microbe.However,limited researches were conducted to study the impacts of land-use patterns on the diversity and community of soil microorganisms in this area.The study aimed to investigate soil microbial community diversity and composition using high-throughput deoxyribonucleic acid(DNA)sequencing under different land-use patterns(apricot tree land,apple tree land,peach tree land,corn land,and abandoned land).The results showed a substantial difference(P<0.050)in bacterial alpha-diversity and beta-diversity between abandoned land and other land-use patterns,with the exception of Shannon index.While fungal beta-diversity was not considerably impacted by land-use patterns,fungal alpha-diversity indices varied significantly.The relative abundance of Actinobacteriota(34.90%),Proteobacteria(20.65%),and Ascomycota(77.42%)varied in soils with different land-use patterns.Soil pH exerted a dominant impact on the soil bacterial communities'composition,whereas soil available phosphorus was the main factor shaping the soil fungal communities'composition.These findings suggest that variations in land-use pattern had resulted in changes to soil properties,subsequently impacting diversity and structure of microbial community in the Loess Plateau.Given the strong interdependence between soil and its microbiota,it is imperative to reclaim abandoned lands to maintain soil fertility and sustain its function,which will have significant ecological service implications,particularly with regards to soil conservation in ecologically vulnerable areas.展开更多
To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and correspo...To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and corresponding subsoil samples)were collected from the five representative land-use patterns.Inductively coupled plasma mass spectrometry(ICP-MS),Atomic fluorescence spectrometry(AFS),and Inductively coupled plasma optical emission spectrometry(ICP-OES)were used to determine the content of PTEs(As,Cd,Hg,Cu,Cr,Ni,Pb,Zn,Co,Mo,Sb,and V).Correlation analysis and factor analysis were used to determine the source of PTEs.Geo-accumulation index(I_(geo)),hazard quotient(HQ),and total carcinogenic risk index(TR)were used to measure the PTEs contamination and its relative health impacts.Results showed that the average values of 12 PTEs in topsoil were higher than the Hainan soil geochemical baseline,showing different degrees of PTEs accumulation effect.The concentration of PTEs in the topsoil was lower than those in the subsoil except for Cd and Hg.The I_(geo)revealed that the major accumulated element in soils was As followed by Mo.Source apportionment suggested that parent materials and agricultural practices were the dominant factors for PTEs accumulation in the topsoil.Noncarcinogenic risks of soil samples from five land-use patterns presented a trend of paddy field>dry field>woodland>orchard>garden plot.However,the HQ values of 12 PTEs were less than the recommended limit of HQ=1,representing that there are no non-carcinogenic risks of PTEs for children and adults in the study area.The TR values are within 6.95×10^(-6)-1.38×10^(-5),which corresponds to the low level.Therefore the PTEs in the agricultural soil of the study area show little influence on the health status of the local population.展开更多
The impact of socioeconomic development on land-use and land-cover change(LUCC)in river basins varies spatially and temporally.Exploring the spatiotemporal evolutionary trends and drivers of LUCC under regional dispar...The impact of socioeconomic development on land-use and land-cover change(LUCC)in river basins varies spatially and temporally.Exploring the spatiotemporal evolutionary trends and drivers of LUCC under regional disparities is the basis for the sustainable development and management of basins.In this study,the Weihe River Basin(WRB)in China was selected as a typical basin,and the WRB was divided into the upstream of the Weihe River Basin(UWRB),the midstream of the Weihe River Basin(MWRB),the downstream of the Weihe River Basin(DWRB),the Jinghe River Basin(JRB),and the Luohe River Basin(LRB).Based on land-use data(cultivated land,forestland,grassland,built-up land,bare land,and water body)from 1985 to 2020,we analyzed the spatiotemporal heterogeneity of LUCC in the WRB using a land-use transfer matrix and a dynamic change model.The driving forces of LUCC in the WRB in different periods were detected using the GeoDetector,and the selected influencing factors included meteorological factors(precipitation and temperature),natural factors(elevation,slope,soil,and distance to rivers),social factors(distance to national highway,distance to railway,distance to provincial highway,and distance to expressway),and human activity factors(population density and gross domestic product(GDP)).The results indicated that the types and intensities of LUCC conversions showed considerable disparities across different sub-basins,where complex conversions among cultivated land,forestland,and grassland occurred in the LRB,JRB,and UWRB,with higher dynamic change before 2000.The conversion of other land-use types to built-up land was concentrated in the UWRB,MWRB,and DWRB,with substantial increases after 2000.Additionally,the driving effects of the influencing factors on LUCC in each sub-basin also exhibited distinct diversity,with the LRB and JRB being influenced by the meteorological and social factors,and the UWRB,MWRB,and DWRB being driven by human activity factors.Moreover,the interaction of these influencing factors indicated an enhanced effect on LUCC.This study confirmed the spatiotemporal heterogeneity effects of socioeconomic status on LUCC in the WRB under regional differences,contributing to the sustainable development of the whole basin by managing sub-basins according to local conditions.展开更多
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in...A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.展开更多
This work investigated the land-use/land-cover and some physico-chemical properties of the soils of Mt Cameroon and presented same in maps. ArcGIS Pro mapping software, Landsat images, Global Positioning Systems (GPS)...This work investigated the land-use/land-cover and some physico-chemical properties of the soils of Mt Cameroon and presented same in maps. ArcGIS Pro mapping software, Landsat images, Global Positioning Systems (GPS) coordinates collected from the field combined with updated shape files from competent services were used to produce the location and land-use/land-cover maps. Sixteen topsoil samples (0 - 20 cm) were collected, 4 from each land use/cover category: farmland, forest, plantation and settlement, and analysed for soil pH, cation exchange capacity (CEC), bulk density, moisture content and soil texture, in the laboratory using standard analytical procedures. This data was used to produce spatial distribution maps using ordinary kriging, in ArcGIS Pro. The main terrestrial land use/cover categories comprised of the forest (mangrove, lowland, montane and sub-montane), agroforestry, plantations, grassland, settlement, cropland, shrubby savannah, and bare lava. Bulk density showed the highest values in settlement areas and least values under forest land-use categories. Soil moisture content exhibited a reverse trend compared to that of soil bulk density. Forest soils were the sandiest while soils in plantation agricultural land were the most clayey. The soils were slightly acidic to neutral with soils from agricultural land being more acidic (pH<sub>(water)</sub> = 5.43). It is discernible from the results that the conversion from forest to other land use/cover classes enhances soil degradation and that soil physico-chemical properties adequately serve as indicators of soil quality in the Mt Cameroon area.展开更多
In this note we consider ruled varieties V22r−1of PG(2r,q), generalizing some results shown for r=2,3in previous papers. By choosing appropriately two directrix curves, a V22r−1represents a non-affine subplane of orde...In this note we consider ruled varieties V22r−1of PG(2r,q), generalizing some results shown for r=2,3in previous papers. By choosing appropriately two directrix curves, a V22r−1represents a non-affine subplane of order qof the projective plane PG(2,qr)represented in PG(2r,q)by a spread of a hyperplane. That proves the conjecture assumed in [1]. Finally, a large family of linear codes dependent on r≥2is associated with projective systems defined both by V22r−1and by a maximal bundle of such varieties with only an r-directrix in common, then are shown their basic parameters.展开更多
The existence of high-density bedding planes is a typical characteristic of shale oil reservoirs.Understanding the behavior of hydraulic fracturing in high-density laminated rocks is significant for promoting shale oi...The existence of high-density bedding planes is a typical characteristic of shale oil reservoirs.Understanding the behavior of hydraulic fracturing in high-density laminated rocks is significant for promoting shale oil production.In this study,a hydraulic fracturing model considering tensile failure and frictional slip of the bedding planes is established within the framework of the unified pipe-interface element method(UP-IEM).The model developed for simulating the interaction between the hydraulic fracture and the bedding plane is validated by comparison with experimental results.The hydraulic fracturing patterns in sealed and unsealed bedding planes are compared.Additionally,the effects of differential stress,bedding plane permeability,spacing,and the friction coefficient of the bedding plane are investigated.The results showed that a single main fracture crossing the bedding planes is more likely to form in sealed bedding planes under high differential stress.The decrease in bedding plane permeability and the increase in the friction coefficient also promote the fracture propagating perpendicular to the bedding planes.Shale with high-density bedding planes has a poorer fracturing effect than that with low-density bedding planes,as the hydraulic fracture is prone to initiate and propagate along the bedding planes.Moreover,higher injection pressure is needed to maintain fracture propagation along the bedding.An increase in bedding density will lead to a smaller fracturing area.Fracturing fluid seepage into the bedding planes slows shale fracturing.It is recommended that increasing the injection flow rate,selecting alternative fracturing fluids,and employing multi-well/multi-cluster fracturing may be efficient methods to improve energy production in shale oil reservoirs.展开更多
In this note we study subplanes of order q of the projective plane Π=PG( 2, q 3 ) and the ruled varieties V 2 5 of Σ=PG( 6,q ) using the spatial representation of Π in Σ, by fixing a hyperplane Σ ′ with a regula...In this note we study subplanes of order q of the projective plane Π=PG( 2, q 3 ) and the ruled varieties V 2 5 of Σ=PG( 6,q ) using the spatial representation of Π in Σ, by fixing a hyperplane Σ ′ with a regular spread of planes. First are shown some configurations of the affine q-subplanes. Then to prove that a variety V 2 5 of Σ represents a non-affine subplane of order q of Π, after having shown basic incidence properties of it, such a variety V 2 5 is constructed by choosing appropriately the two directrix curves in two complementary subspaces of Σ. The result can be translated into further incidence properties of the affine points of V 2 5 . Then a maximal bundle of varieties V 2 5 having in common one directrix cubic curve is constructed.展开更多
The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direc...The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise.展开更多
Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this ...Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering.展开更多
A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure opt...A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure optimization and crosstalk suppression.A monolithic fabrication process with low damage was explored,which was verified to be compatible well with HgCdTe devices.After monolithic integration of MPA,NETD<9.5 mK was still maintained.Furthermore,to figure out the underlying mechanism that dominat⁃ed the extinction ratio(ER),specialized MPA layouts were designed,and the crosstalk was experimentally vali⁃dated as the major source that impacted ER.By expanding opaque regions at pixel edges to 4μm,crosstalk rates from adjacent pixels could be effectively reduced to approximately 2%,and promising ERs ranging from 17.32 to 27.41 were implemented.展开更多
Laparoscopic surgery is the main treatment method for patients with gastrointestinal malignant tumors.Although laparoscopic surgery is minimally invasive,its tool stimulation and pneumoperitoneum pressure often cause ...Laparoscopic surgery is the main treatment method for patients with gastrointestinal malignant tumors.Although laparoscopic surgery is minimally invasive,its tool stimulation and pneumoperitoneum pressure often cause strong stress reactions in patients.On the other hand,gastrointestinal surgery can cause stronger pain in patients,compared to other surgeries.Transversus abdominis plane block(TAPB)can effectively inhibit the transmission of nerve impulses caused by surgical stimulation,alleviate patient pain,and thus alleviate stress reactions.Remazolam is an acting,safe,and effective sedative,which has little effect on hemodynamics and is suitable for most patients.TAPB combined with remazolam can reduce the dosage of total anesthetic drugs,reduce adverse reactions,reduce stress reactions,and facilitate the rapid postoperative recovery of patients.展开更多
The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evalua...The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering.展开更多
BACKGROUND The serratus anterior muscle,located in the lateral aspect of the thorax,plays a crucial role in shoulder movement and stability.Thoracoscopic surgery,while minimally invasive,often results in significant p...BACKGROUND The serratus anterior muscle,located in the lateral aspect of the thorax,plays a crucial role in shoulder movement and stability.Thoracoscopic surgery,while minimally invasive,often results in significant postoperative pain,complicating patient recovery and potentially extending hospital stays.Traditional anesthesia methods may not adequately address this pain,leading to increased complications such as agitation due to inadequate pain management.AIM To evaluate the application value of ultrasound-guided serratus anterior plane block(SAPB)in patients undergoing thoracoscopic surgery,focusing on its effects on postoperative analgesia and rehabilitation.METHODS Eighty patients undergoing thoracoscopic surgery between August 2021 and December 2022 were randomly divided into two groups:An observation group receiving ultrasound-guided SAPB and a control group receiving standard care without SAPB.Both groups underwent general anesthesia and were monitored for blood pressure,heart rate(HR),oxygen saturation,and pulse.The primary outcomes measured included mean arterial pressure(MAP),HR,postoperative visual analogue scale(VAS)scores for pain,supplemental analgesic use,and incidence of agitation.RESULTS The observation group showed significantly lower cortisol and glucose concentrations at various time points post-operation compared to the control group,indicating reduced stress responses.Moreover,MAP and HR levels were lower in the observation group during and after surgery.VAS scores were significantly lower in the observation group at 1 h,4 h,6 h,and 12 h post-surgery,and the rates of analgesic supplementation and agitation were significantly reduced compared to the control group.CONCLUSION Ultrasound-guided SAPB significantly improves postoperative analgesia and reduces agitation in patients undergoing thoracoscopic surgery.This technique stabilizes perioperative vital signs,decreases the need for supplemental analgesics,and minimizes postoperative pain and stress responses,underscoring its high application value in enhancing patient recovery and rehabilitation post-thoracoscopy.展开更多
An advanced method for rapidly computing holograms of large three-dimensional(3D)objects combines backward ray tracing with adaptive resolution wavefront recording plane(WRP)and adaptive angular spectrum propagation.I...An advanced method for rapidly computing holograms of large three-dimensional(3D)objects combines backward ray tracing with adaptive resolution wavefront recording plane(WRP)and adaptive angular spectrum propagation.In the initial phase,a WRP with adjustable resolution and sampling interval based on the object’s size is defined to capture detailed information from large 3D objects.The second phase employs an adaptive angular spectrum method(ASM)to efficiently compute the propagation from the large-sized WRP to the small-sized computer-generated hologram(CGH).The computation process is accelerated using CUDA and OptiX.Optical experiments confirm that the algorithm can generate high-quality holograms with shadow and occlusion effects at a resolution of 1024×1024 in 29 ms.展开更多
The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurat...The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.展开更多
The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
The development of aqueous Zn batteries is limited by parasitic water reactions,corrosion,and dendrite growth.To address these challenges,an inner Helmholtz plane(IHP)regulation method is proposed by employing low-cos...The development of aqueous Zn batteries is limited by parasitic water reactions,corrosion,and dendrite growth.To address these challenges,an inner Helmholtz plane(IHP)regulation method is proposed by employing low-cost,non-toxic maltitol as the electrolyte additive.The preferential adsorption behavior of maltitol can expel the water from the inner Helmholtz plane,and thus hinder the immediate contact between Zn metal and H_(2)O.Meanwhile,strong interaction between maltitol and H_(2)O molecules can restrain the activity of H_(2)O.Besides,the"IHP adsorption effect"along with the low LUMO energy level of maltitol-CF_(3)SO_(3)^(-)can promote the in-situ formation of an organic-inorganic complex solid electrolyte interface(SEI)layer.As a result,the hydrogen/oxygen evolution side reaction,corrosion,and dendrites issues are effectively suppressed,thereby leading to highly reversible and dendrite-free Zn plating/stripping.The Zn‖I_(2)battery with hybrid electrolytes also demonstrates high electrochemical performance and ultralong cycling stability,showing a capacity retention of 75%over 20000 charge-discharge cycles at a large current density of 5 A g^(-1).In addition,the capacity of the device has almost no obvious decay over20000 cycles even at-30℃.This work offers a successful electrolyte regulation strategy via the IHP adsorption effect to design electrolytes for high-performance rechargeable Zn-ion batteries.展开更多
Tricuspid annular plane systolic excursion has been proposed as a simple and reproducible parameter for quantitative assessment of the right ventricular ejection fraction. The prognostic importance of preoperative TAP...Tricuspid annular plane systolic excursion has been proposed as a simple and reproducible parameter for quantitative assessment of the right ventricular ejection fraction. The prognostic importance of preoperative TAPSE in patients with mitral valve replacement for rheumatic mitral stenosis patients is still under focused. Therefore, the objective of the study was to predict the outcome after MVR in rheumatic mitral stenosis patients in relation to preoperative TAPSE. This comparative cross-sectional study was conducted at the Department of Cardiac Surgery, National Heart Foundation Hospital and Research Institute. A total of 72 patients of rheumatic mitral stenosis patients who underwent mitral valve replacement were included in the study. They were divided into two groups: Group A and B. Group A included 36 patients with TAPSE 0.05) except for the preoperative TAPSE. Mean TAPSE of Group A was 13.17 (±1.40) and Group B was 18.61 (±1.57), the difference was statistically significant (p 0.05). Among the postoperative complications, including postoperative atrial fibrillation was higher in Group A (30.56%) than Group B (11.11%), mean ventilation time was higher in Group A (27.78%) than Group B (5.56%), length of intensive care was higher in Group A (33.33%) than Group B (11.12%), and hospital stay was higher in Group A (25.0%) than Group B (5.56%), (p < 0.05). Higher preoperative TASPE could be used as a prognostic tool for MVR in rheumatic mitral stenosis patients in our settings.展开更多
This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories.The purpose of this review is to provide i...This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories.The purpose of this review is to provide in-formation about the existing works on the subject,critically discuss them and make suggestions for further research.The reviewed papers are presented on the basis of the various models for pavement-vehicle systems and the various methods for dynamically analyzing these systems.Flexible pavements are modeled by a homogeneous or layered half-plane with isotropic or anisotropic and linear elastic,viscoelastic or poroelastic material behavior.Rigid pavements are modeled by a beam or plate on a homogeneous or layered half-plane with material properties like the ones for flexible pavements.The vehicles are modeled as concentrated or distributed over a finite area loads moving with constant or time dependent speed.The above pavement-vehicle models are dynamically analyzed by analytical,analytical/numerical or purely numerical methods working in the time or frequency domain.Representative examples are presented to illustrate the models and methods of analysis,demonstrate their merits and assess the effects of the various parameters on pavement response.The paper closes with con-clusions and suggestions for further research in the area.The significance of this research effort has to do with the presentation of the existing literature on the subject in a critical and easy to understand way with the aid of representative examples and the identification of new research areas.展开更多
基金supported by the Science and Technology Planning Project of Gansu Province,China(23ZDKA017).
文摘In the Loess Plateau of China,land-use pattern is a major factor in controlling underlying biological processes.Additionally,the process of land-use pattern was accompanied by abandoned lands,potentially impacting soil microbe.However,limited researches were conducted to study the impacts of land-use patterns on the diversity and community of soil microorganisms in this area.The study aimed to investigate soil microbial community diversity and composition using high-throughput deoxyribonucleic acid(DNA)sequencing under different land-use patterns(apricot tree land,apple tree land,peach tree land,corn land,and abandoned land).The results showed a substantial difference(P<0.050)in bacterial alpha-diversity and beta-diversity between abandoned land and other land-use patterns,with the exception of Shannon index.While fungal beta-diversity was not considerably impacted by land-use patterns,fungal alpha-diversity indices varied significantly.The relative abundance of Actinobacteriota(34.90%),Proteobacteria(20.65%),and Ascomycota(77.42%)varied in soils with different land-use patterns.Soil pH exerted a dominant impact on the soil bacterial communities'composition,whereas soil available phosphorus was the main factor shaping the soil fungal communities'composition.These findings suggest that variations in land-use pattern had resulted in changes to soil properties,subsequently impacting diversity and structure of microbial community in the Loess Plateau.Given the strong interdependence between soil and its microbiota,it is imperative to reclaim abandoned lands to maintain soil fertility and sustain its function,which will have significant ecological service implications,particularly with regards to soil conservation in ecologically vulnerable areas.
基金supported by Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements(No.2023KFKTB001)the Science&Technology Fundamental Resources Investigation Program(2022FY101800)+2 种基金the National Nonprofit Institute Research Grant of IGGE(AS2023D01)the projects of the China Geological Survey(DD20230309 and DD20190305)the National Natural Science Foundation of China(42002105)。
文摘To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and corresponding subsoil samples)were collected from the five representative land-use patterns.Inductively coupled plasma mass spectrometry(ICP-MS),Atomic fluorescence spectrometry(AFS),and Inductively coupled plasma optical emission spectrometry(ICP-OES)were used to determine the content of PTEs(As,Cd,Hg,Cu,Cr,Ni,Pb,Zn,Co,Mo,Sb,and V).Correlation analysis and factor analysis were used to determine the source of PTEs.Geo-accumulation index(I_(geo)),hazard quotient(HQ),and total carcinogenic risk index(TR)were used to measure the PTEs contamination and its relative health impacts.Results showed that the average values of 12 PTEs in topsoil were higher than the Hainan soil geochemical baseline,showing different degrees of PTEs accumulation effect.The concentration of PTEs in the topsoil was lower than those in the subsoil except for Cd and Hg.The I_(geo)revealed that the major accumulated element in soils was As followed by Mo.Source apportionment suggested that parent materials and agricultural practices were the dominant factors for PTEs accumulation in the topsoil.Noncarcinogenic risks of soil samples from five land-use patterns presented a trend of paddy field>dry field>woodland>orchard>garden plot.However,the HQ values of 12 PTEs were less than the recommended limit of HQ=1,representing that there are no non-carcinogenic risks of PTEs for children and adults in the study area.The TR values are within 6.95×10^(-6)-1.38×10^(-5),which corresponds to the low level.Therefore the PTEs in the agricultural soil of the study area show little influence on the health status of the local population.
基金supported by the Natural Science Basic Research Program of Shaanxi Province(2019JLZ-15)the Water Science and Technology Program of Shaanxi Province(2018slkj-4)the Research Fund of the State Key Laboratory of Eco-hydraulics in Northwest Arid Region,Xi'an University of Technology(2019KJCXTD-5)。
文摘The impact of socioeconomic development on land-use and land-cover change(LUCC)in river basins varies spatially and temporally.Exploring the spatiotemporal evolutionary trends and drivers of LUCC under regional disparities is the basis for the sustainable development and management of basins.In this study,the Weihe River Basin(WRB)in China was selected as a typical basin,and the WRB was divided into the upstream of the Weihe River Basin(UWRB),the midstream of the Weihe River Basin(MWRB),the downstream of the Weihe River Basin(DWRB),the Jinghe River Basin(JRB),and the Luohe River Basin(LRB).Based on land-use data(cultivated land,forestland,grassland,built-up land,bare land,and water body)from 1985 to 2020,we analyzed the spatiotemporal heterogeneity of LUCC in the WRB using a land-use transfer matrix and a dynamic change model.The driving forces of LUCC in the WRB in different periods were detected using the GeoDetector,and the selected influencing factors included meteorological factors(precipitation and temperature),natural factors(elevation,slope,soil,and distance to rivers),social factors(distance to national highway,distance to railway,distance to provincial highway,and distance to expressway),and human activity factors(population density and gross domestic product(GDP)).The results indicated that the types and intensities of LUCC conversions showed considerable disparities across different sub-basins,where complex conversions among cultivated land,forestland,and grassland occurred in the LRB,JRB,and UWRB,with higher dynamic change before 2000.The conversion of other land-use types to built-up land was concentrated in the UWRB,MWRB,and DWRB,with substantial increases after 2000.Additionally,the driving effects of the influencing factors on LUCC in each sub-basin also exhibited distinct diversity,with the LRB and JRB being influenced by the meteorological and social factors,and the UWRB,MWRB,and DWRB being driven by human activity factors.Moreover,the interaction of these influencing factors indicated an enhanced effect on LUCC.This study confirmed the spatiotemporal heterogeneity effects of socioeconomic status on LUCC in the WRB under regional differences,contributing to the sustainable development of the whole basin by managing sub-basins according to local conditions.
基金supported by the General Program of the National Natural Science Foundation of China(Grant No.52074295)the Special Fund for Basic Scientific Research Business Expenses of Central Universities(Grant No.2022YJSSB06)supported by State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and technology,Beijing,China(Grant No.SKLGDUEK202217).
文摘A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.
文摘This work investigated the land-use/land-cover and some physico-chemical properties of the soils of Mt Cameroon and presented same in maps. ArcGIS Pro mapping software, Landsat images, Global Positioning Systems (GPS) coordinates collected from the field combined with updated shape files from competent services were used to produce the location and land-use/land-cover maps. Sixteen topsoil samples (0 - 20 cm) were collected, 4 from each land use/cover category: farmland, forest, plantation and settlement, and analysed for soil pH, cation exchange capacity (CEC), bulk density, moisture content and soil texture, in the laboratory using standard analytical procedures. This data was used to produce spatial distribution maps using ordinary kriging, in ArcGIS Pro. The main terrestrial land use/cover categories comprised of the forest (mangrove, lowland, montane and sub-montane), agroforestry, plantations, grassland, settlement, cropland, shrubby savannah, and bare lava. Bulk density showed the highest values in settlement areas and least values under forest land-use categories. Soil moisture content exhibited a reverse trend compared to that of soil bulk density. Forest soils were the sandiest while soils in plantation agricultural land were the most clayey. The soils were slightly acidic to neutral with soils from agricultural land being more acidic (pH<sub>(water)</sub> = 5.43). It is discernible from the results that the conversion from forest to other land use/cover classes enhances soil degradation and that soil physico-chemical properties adequately serve as indicators of soil quality in the Mt Cameroon area.
文摘In this note we consider ruled varieties V22r−1of PG(2r,q), generalizing some results shown for r=2,3in previous papers. By choosing appropriately two directrix curves, a V22r−1represents a non-affine subplane of order qof the projective plane PG(2,qr)represented in PG(2r,q)by a spread of a hyperplane. That proves the conjecture assumed in [1]. Finally, a large family of linear codes dependent on r≥2is associated with projective systems defined both by V22r−1and by a maximal bundle of such varieties with only an r-directrix in common, then are shown their basic parameters.
基金The authors wish to acknowledge the financial support from Key Laboratory of Deep Earth Science and Engineering(Sichuan University),Ministry of Education(DESE202202,H.Y)State Energy Center for Shale Oil Research and Development(33550000-22-ZC0613-0365,H.Y)+2 种基金National Natural Science Foundation of China(42307209,X.Y)China Postdoctoral Science Foundation(2022M712425,X.Y)Shanghai Pujiang Program(2022PJD076,X.Y).
文摘The existence of high-density bedding planes is a typical characteristic of shale oil reservoirs.Understanding the behavior of hydraulic fracturing in high-density laminated rocks is significant for promoting shale oil production.In this study,a hydraulic fracturing model considering tensile failure and frictional slip of the bedding planes is established within the framework of the unified pipe-interface element method(UP-IEM).The model developed for simulating the interaction between the hydraulic fracture and the bedding plane is validated by comparison with experimental results.The hydraulic fracturing patterns in sealed and unsealed bedding planes are compared.Additionally,the effects of differential stress,bedding plane permeability,spacing,and the friction coefficient of the bedding plane are investigated.The results showed that a single main fracture crossing the bedding planes is more likely to form in sealed bedding planes under high differential stress.The decrease in bedding plane permeability and the increase in the friction coefficient also promote the fracture propagating perpendicular to the bedding planes.Shale with high-density bedding planes has a poorer fracturing effect than that with low-density bedding planes,as the hydraulic fracture is prone to initiate and propagate along the bedding planes.Moreover,higher injection pressure is needed to maintain fracture propagation along the bedding.An increase in bedding density will lead to a smaller fracturing area.Fracturing fluid seepage into the bedding planes slows shale fracturing.It is recommended that increasing the injection flow rate,selecting alternative fracturing fluids,and employing multi-well/multi-cluster fracturing may be efficient methods to improve energy production in shale oil reservoirs.
文摘In this note we study subplanes of order q of the projective plane Π=PG( 2, q 3 ) and the ruled varieties V 2 5 of Σ=PG( 6,q ) using the spatial representation of Π in Σ, by fixing a hyperplane Σ ′ with a regular spread of planes. First are shown some configurations of the affine q-subplanes. Then to prove that a variety V 2 5 of Σ represents a non-affine subplane of order q of Π, after having shown basic incidence properties of it, such a variety V 2 5 is constructed by choosing appropriately the two directrix curves in two complementary subspaces of Σ. The result can be translated into further incidence properties of the affine points of V 2 5 . Then a maximal bundle of varieties V 2 5 having in common one directrix cubic curve is constructed.
基金supported by the National Natural Science Foundation of China(21627813)。
文摘The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise.
基金This work presented in this paper was funded by the National Natural Science Foundation of China(Grant Nos.51478031 and 51278046)Shenzhen Science and Technology Innovation Fund(Grant No.FA24405041).The authors are grateful to the editor and reviewers for discerning comments on this paper.
文摘Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering.
基金Supported by the self-funded project of Kunming Institute of Physics。
文摘A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure optimization and crosstalk suppression.A monolithic fabrication process with low damage was explored,which was verified to be compatible well with HgCdTe devices.After monolithic integration of MPA,NETD<9.5 mK was still maintained.Furthermore,to figure out the underlying mechanism that dominat⁃ed the extinction ratio(ER),specialized MPA layouts were designed,and the crosstalk was experimentally vali⁃dated as the major source that impacted ER.By expanding opaque regions at pixel edges to 4μm,crosstalk rates from adjacent pixels could be effectively reduced to approximately 2%,and promising ERs ranging from 17.32 to 27.41 were implemented.
基金Supported by Health Commission of Hebei Province,China,No.20240074Scientific Research Project of Hebei Provincial Administration of Traditional Chinese Medicine,China,No.2024317.
文摘Laparoscopic surgery is the main treatment method for patients with gastrointestinal malignant tumors.Although laparoscopic surgery is minimally invasive,its tool stimulation and pneumoperitoneum pressure often cause strong stress reactions in patients.On the other hand,gastrointestinal surgery can cause stronger pain in patients,compared to other surgeries.Transversus abdominis plane block(TAPB)can effectively inhibit the transmission of nerve impulses caused by surgical stimulation,alleviate patient pain,and thus alleviate stress reactions.Remazolam is an acting,safe,and effective sedative,which has little effect on hemodynamics and is suitable for most patients.TAPB combined with remazolam can reduce the dosage of total anesthetic drugs,reduce adverse reactions,reduce stress reactions,and facilitate the rapid postoperative recovery of patients.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC2907600)the National Natural Science Foundation of China(Grant Nos.42277174 and 52204260).
文摘The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering.
文摘BACKGROUND The serratus anterior muscle,located in the lateral aspect of the thorax,plays a crucial role in shoulder movement and stability.Thoracoscopic surgery,while minimally invasive,often results in significant postoperative pain,complicating patient recovery and potentially extending hospital stays.Traditional anesthesia methods may not adequately address this pain,leading to increased complications such as agitation due to inadequate pain management.AIM To evaluate the application value of ultrasound-guided serratus anterior plane block(SAPB)in patients undergoing thoracoscopic surgery,focusing on its effects on postoperative analgesia and rehabilitation.METHODS Eighty patients undergoing thoracoscopic surgery between August 2021 and December 2022 were randomly divided into two groups:An observation group receiving ultrasound-guided SAPB and a control group receiving standard care without SAPB.Both groups underwent general anesthesia and were monitored for blood pressure,heart rate(HR),oxygen saturation,and pulse.The primary outcomes measured included mean arterial pressure(MAP),HR,postoperative visual analogue scale(VAS)scores for pain,supplemental analgesic use,and incidence of agitation.RESULTS The observation group showed significantly lower cortisol and glucose concentrations at various time points post-operation compared to the control group,indicating reduced stress responses.Moreover,MAP and HR levels were lower in the observation group during and after surgery.VAS scores were significantly lower in the observation group at 1 h,4 h,6 h,and 12 h post-surgery,and the rates of analgesic supplementation and agitation were significantly reduced compared to the control group.CONCLUSION Ultrasound-guided SAPB significantly improves postoperative analgesia and reduces agitation in patients undergoing thoracoscopic surgery.This technique stabilizes perioperative vital signs,decreases the need for supplemental analgesics,and minimizes postoperative pain and stress responses,underscoring its high application value in enhancing patient recovery and rehabilitation post-thoracoscopy.
基金Project supported by the Special Project of Central Government Guiding Local Science and Technology Development in Beijing 2020(Grant No.Z201100004320006).
文摘An advanced method for rapidly computing holograms of large three-dimensional(3D)objects combines backward ray tracing with adaptive resolution wavefront recording plane(WRP)and adaptive angular spectrum propagation.In the initial phase,a WRP with adjustable resolution and sampling interval based on the object’s size is defined to capture detailed information from large 3D objects.The second phase employs an adaptive angular spectrum method(ASM)to efficiently compute the propagation from the large-sized WRP to the small-sized computer-generated hologram(CGH).The computation process is accelerated using CUDA and OptiX.Optical experiments confirm that the algorithm can generate high-quality holograms with shadow and occlusion effects at a resolution of 1024×1024 in 29 ms.
基金the National Natural Science Foundation of China(No.11572210).
文摘The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
基金supported by the National Natural Science Foundation of China(52261160384)the Shenzhen Science and Technology Innovation Commission(RCYX20221008092934093)+1 种基金the Shenzhen Science and Technology Program(KJZD20230923114107014)the support from Testing Technology Center of Materials and Devices,Tsinghua Shenzhen International Graduate School。
文摘The development of aqueous Zn batteries is limited by parasitic water reactions,corrosion,and dendrite growth.To address these challenges,an inner Helmholtz plane(IHP)regulation method is proposed by employing low-cost,non-toxic maltitol as the electrolyte additive.The preferential adsorption behavior of maltitol can expel the water from the inner Helmholtz plane,and thus hinder the immediate contact between Zn metal and H_(2)O.Meanwhile,strong interaction between maltitol and H_(2)O molecules can restrain the activity of H_(2)O.Besides,the"IHP adsorption effect"along with the low LUMO energy level of maltitol-CF_(3)SO_(3)^(-)can promote the in-situ formation of an organic-inorganic complex solid electrolyte interface(SEI)layer.As a result,the hydrogen/oxygen evolution side reaction,corrosion,and dendrites issues are effectively suppressed,thereby leading to highly reversible and dendrite-free Zn plating/stripping.The Zn‖I_(2)battery with hybrid electrolytes also demonstrates high electrochemical performance and ultralong cycling stability,showing a capacity retention of 75%over 20000 charge-discharge cycles at a large current density of 5 A g^(-1).In addition,the capacity of the device has almost no obvious decay over20000 cycles even at-30℃.This work offers a successful electrolyte regulation strategy via the IHP adsorption effect to design electrolytes for high-performance rechargeable Zn-ion batteries.
文摘Tricuspid annular plane systolic excursion has been proposed as a simple and reproducible parameter for quantitative assessment of the right ventricular ejection fraction. The prognostic importance of preoperative TAPSE in patients with mitral valve replacement for rheumatic mitral stenosis patients is still under focused. Therefore, the objective of the study was to predict the outcome after MVR in rheumatic mitral stenosis patients in relation to preoperative TAPSE. This comparative cross-sectional study was conducted at the Department of Cardiac Surgery, National Heart Foundation Hospital and Research Institute. A total of 72 patients of rheumatic mitral stenosis patients who underwent mitral valve replacement were included in the study. They were divided into two groups: Group A and B. Group A included 36 patients with TAPSE 0.05) except for the preoperative TAPSE. Mean TAPSE of Group A was 13.17 (±1.40) and Group B was 18.61 (±1.57), the difference was statistically significant (p 0.05). Among the postoperative complications, including postoperative atrial fibrillation was higher in Group A (30.56%) than Group B (11.11%), mean ventilation time was higher in Group A (27.78%) than Group B (5.56%), length of intensive care was higher in Group A (33.33%) than Group B (11.12%), and hospital stay was higher in Group A (25.0%) than Group B (5.56%), (p < 0.05). Higher preoperative TASPE could be used as a prognostic tool for MVR in rheumatic mitral stenosis patients in our settings.
文摘This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories.The purpose of this review is to provide in-formation about the existing works on the subject,critically discuss them and make suggestions for further research.The reviewed papers are presented on the basis of the various models for pavement-vehicle systems and the various methods for dynamically analyzing these systems.Flexible pavements are modeled by a homogeneous or layered half-plane with isotropic or anisotropic and linear elastic,viscoelastic or poroelastic material behavior.Rigid pavements are modeled by a beam or plate on a homogeneous or layered half-plane with material properties like the ones for flexible pavements.The vehicles are modeled as concentrated or distributed over a finite area loads moving with constant or time dependent speed.The above pavement-vehicle models are dynamically analyzed by analytical,analytical/numerical or purely numerical methods working in the time or frequency domain.Representative examples are presented to illustrate the models and methods of analysis,demonstrate their merits and assess the effects of the various parameters on pavement response.The paper closes with con-clusions and suggestions for further research in the area.The significance of this research effort has to do with the presentation of the existing literature on the subject in a critical and easy to understand way with the aid of representative examples and the identification of new research areas.