In this paper we prove a very general result concerning solvability of the resonant problem: Δu+λ<sub>k</sub>u+g(x, u)=h(x);u=0, xΩ, which immediately gives three generalized Landesman-Lazer conditi...In this paper we prove a very general result concerning solvability of the resonant problem: Δu+λ<sub>k</sub>u+g(x, u)=h(x);u=0, xΩ, which immediately gives three generalized Landesman-Lazer conditions. The most interesting application of the general result is concerned with the problem when λ<sub>k</sub>=λ<sub>1</sub>. in which case we prove solvability results for it under conditions which are not the standard Landesman-Lazer condition or only partly enjoy it. Furthermore, we propose a new sign condition and give a comprehensive extension of a main result of Figueiredo and Ni.展开更多
We establish the existence and multiplicity of solutions for Steklov problems under non- resonance or resonance conditions using variational methods. In our main theorems, we consider a weighted eigenvalue problem of ...We establish the existence and multiplicity of solutions for Steklov problems under non- resonance or resonance conditions using variational methods. In our main theorems, we consider a weighted eigenvalue problem of Steklov type.展开更多
文摘In this paper we prove a very general result concerning solvability of the resonant problem: Δu+λ<sub>k</sub>u+g(x, u)=h(x);u=0, xΩ, which immediately gives three generalized Landesman-Lazer conditions. The most interesting application of the general result is concerned with the problem when λ<sub>k</sub>=λ<sub>1</sub>. in which case we prove solvability results for it under conditions which are not the standard Landesman-Lazer condition or only partly enjoy it. Furthermore, we propose a new sign condition and give a comprehensive extension of a main result of Figueiredo and Ni.
文摘We establish the existence and multiplicity of solutions for Steklov problems under non- resonance or resonance conditions using variational methods. In our main theorems, we consider a weighted eigenvalue problem of Steklov type.