In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization a...In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization and industrialization as well as other intensified human activities,especially in arid and semi-arid areas.In the study,we chose the economic belt on the northern slope of the Tianshan Mountains(EBNSTM)in Xinjiang Uygur Autonomous Region of China as a case study.By collecting geographic data and statistical data from 2010 and 2020,we constructed an ecological resilience assessment model based on the ecosystem habitat quality(EHQ),ecosystem landscape stability(ELS),and ecosystem service value(ESV).Further,we analyzed the temporal and spatial variation characteristics of ecological resilience in the EBNSTM from 2010 to 2020 by spatial autocorrelation analysis,and explored its responses to climate change and human activities using the geographically weighted regression(GWR)model.The results showed that the ecological resilience of the EBNSTM was at a low level and increased from 0.2732 to 0.2773 during 2010–2020.The spatial autocorrelation analysis of ecological resilience exhibited a spatial heterogeneity characteristic of"high in the western region and low in the eastern region",and the spatial clustering trend was enhanced during the study period.Desert,Gobi and rapidly urbanized areas showed low level of ecological resilience,and oasis and mountain areas exhibited high level of ecological resilience.Climate factors had an important impact on ecological resilience.Specifically,average annual temperature and annual precipitation were the key climate factors that improved ecological resilience,while average annual evapotranspiration was the main factor that blocked ecological resilience.Among the human activity factors,the distance from the main road showed a negative correlation with ecological resilience.Both night light index and PM2.5 concentration were negatively correlated with ecological resilience in the areas with better ecological conditions,whereas in the areas with poorer ecological conditions,the correlations were positive.The research findings could provide a scientific reference for protecting the ecological environment and promoting the harmony and stability of the human-land relationship in arid and semi-arid areas.展开更多
基金supported by the Third Xinjiang Scientific Expedition Program (2021xjkk0905).
文摘In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization and industrialization as well as other intensified human activities,especially in arid and semi-arid areas.In the study,we chose the economic belt on the northern slope of the Tianshan Mountains(EBNSTM)in Xinjiang Uygur Autonomous Region of China as a case study.By collecting geographic data and statistical data from 2010 and 2020,we constructed an ecological resilience assessment model based on the ecosystem habitat quality(EHQ),ecosystem landscape stability(ELS),and ecosystem service value(ESV).Further,we analyzed the temporal and spatial variation characteristics of ecological resilience in the EBNSTM from 2010 to 2020 by spatial autocorrelation analysis,and explored its responses to climate change and human activities using the geographically weighted regression(GWR)model.The results showed that the ecological resilience of the EBNSTM was at a low level and increased from 0.2732 to 0.2773 during 2010–2020.The spatial autocorrelation analysis of ecological resilience exhibited a spatial heterogeneity characteristic of"high in the western region and low in the eastern region",and the spatial clustering trend was enhanced during the study period.Desert,Gobi and rapidly urbanized areas showed low level of ecological resilience,and oasis and mountain areas exhibited high level of ecological resilience.Climate factors had an important impact on ecological resilience.Specifically,average annual temperature and annual precipitation were the key climate factors that improved ecological resilience,while average annual evapotranspiration was the main factor that blocked ecological resilience.Among the human activity factors,the distance from the main road showed a negative correlation with ecological resilience.Both night light index and PM2.5 concentration were negatively correlated with ecological resilience in the areas with better ecological conditions,whereas in the areas with poorer ecological conditions,the correlations were positive.The research findings could provide a scientific reference for protecting the ecological environment and promoting the harmony and stability of the human-land relationship in arid and semi-arid areas.