期刊文献+
共找到225篇文章
< 1 2 12 >
每页显示 20 50 100
The Electrical Conductivity Structure of the Lanping–Simao Basin and its Implications for Mineralization 被引量:1
1
作者 LI Yike WANG Anjian +1 位作者 CAO Dianhua GUAN Ye 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第3期1055-1056,共2页
Objective The Lanping-Simao Basin in western Yunnan, located in the southeastern margin of the Tibetan Plateau, is tectonically in the transition zone between the Gondwana and Eurasia tectonic domains. It is also the ... Objective The Lanping-Simao Basin in western Yunnan, located in the southeastern margin of the Tibetan Plateau, is tectonically in the transition zone between the Gondwana and Eurasia tectonic domains. It is also the frontier zone of northeastern extrusion of the Indochina Plate towards the Eurasia Plate as well as the escape zone for the deep material. The middle axial tectonic zone, also known as the Lanping-Simao Fault (LSF) in previous study, is a giant intraplate tectonic belt composed of a series of narrow uplift belt, rupture depression zone, metamorphic belt, alteration belt and marginal fracture system, which were formed by the compressional uplift of the central depression of the Lanping-Simao Basin. This tectonic unit controls the geological evolution, seismic activity, hot spring distribution and ore formation of the LanpingSimao Basin since the Mesozoic and Cenozoic. 展开更多
关键词 simao basin and its Implications for Mineralization The Electrical Conductivity Structure of the lanping LSF
下载PDF
Geochemical Constraints on the Origin and Evolution of Spring Waters in the Changdu-Lanping-Simao Basin, Southwestern China 被引量:2
2
作者 QIN Xiwei MA Haizhou +5 位作者 ZHANG Xiying CHENG Huaide HAN Jibin LI Yongshou MIAO Weiliang HAI Qingyu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第4期1097-1112,共16页
Chemical and isotopic data were measured for 51 leached brine springs in the Changdu-Lanping-Simao Basin(CD-LP-SM),China.The predominance of Cl and Na,saturation indices of carbonate minerals,and Na/Cl and Ca/SO4 rati... Chemical and isotopic data were measured for 51 leached brine springs in the Changdu-Lanping-Simao Basin(CD-LP-SM),China.The predominance of Cl and Na,saturation indices of carbonate minerals,and Na/Cl and Ca/SO4 ratios of^1 suggest that halite,sulphate,and carbonate are the solute sources.Integration of geochemical,δ18 O,andδD values suggests that springs are mainly derived from meteoric water,ice-snow melt,and water-rock interactions.B concentrations range from 0.18 to 11.9 mg/L,withδ11 B values of-4.37‰to+32.39‰,indicating a terrestrial source.Theδ11 B-B relationships suggest B sources of crustal origin(marine carbonates with minor crust-derived volcanics);we did not identify a marine or deep mantle origin.Theδ11 B values of saline springs(+4.61‰to+32.39‰)exceed those of hot(-4.37‰to+4.53‰)and cold(-3.47‰to+14.84‰)springs;this has contributed to strong water-rock interactions and strong saturation of dissolved carbonates.Conversely,the global geothermalδ11 B-Cl/B relationship suggests mixing of marine and non-marine sources.Theδ11 B-Cl/B relationships of the CD-LP-SM are similar to those of the Tibet geothermal belt and the Nangqen Basin,indicating the same B origin.These differ from thermal waters controlled by magmatic fluids and seawater,suggesting that B in CD-LP-SM springs has a crustal origin. 展开更多
关键词 Changdu-lanping-simao basin Δ18O δD δ11B BORON spring water origin
下载PDF
Fault Zone Fluid Deep-penetrating Techniques for Potash Deposit Prediction in Lanping-Simao Basin,Yunnan,South China 被引量:1
3
作者 BO Ying LIU Chenglin CAO Yangtong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第S1期201-202,共2页
In China,the strategic resource potash is suffering from severe shortages,and the ancient marine solid potash locating is still a problem of long impregnability.Till now,only the Mengyejing Potash Deposit was found
关键词 FLUID deep-penetrating noble gas PREDICTION lanping-simao basin
下载PDF
TECTONIC SETTING OF ORGANIC MINERALIZATION IN THE LANPING-SIMAO BASIN,WESTERN YUNNAN, SW CHINA
4
作者 CHEN Guanghao YIN Hanhui (Changsha Institute of Geotectonics, Academia Sinica, Changsha, 410013, China) 《Geotectonica et Metallogenia》 1996年第Z2期180-183,共4页
The Tertiary is the main mineralization period in the Lanping-Simao Basin.The deposits are rich in organic matter and the organie matter takes part in the metal and nonmetal mineralization process. The organic mineral... The Tertiary is the main mineralization period in the Lanping-Simao Basin.The deposits are rich in organic matter and the organie matter takes part in the metal and nonmetal mineralization process. The organic mineralization is controlled by the tectonic setting.Different tectonic setting results in different mineralization and type of organic matters. 展开更多
关键词 organic MINERALIZATION TECTONIC SETTING lanping-simao basin
下载PDF
Giant Mineral Deposits and Their Geodynamic Setting in the Lanping Basin, Yunnan, China 被引量:22
5
作者 XUEChunji LIUShuwen +2 位作者 CHENYuchuan ZENGRong ZHAOShihua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期368-374,共7页
There are giant mineral deposits, including the Jinding Zn-Pb and Baiyangping Ag-Co-Cu, and otherimportant mineral deposits (e.g., Baiyangchang Ag-Cu, Jinman Cu deposits, etc.) in the Lanping Mesozoic-Cenozoic Basin, ... There are giant mineral deposits, including the Jinding Zn-Pb and Baiyangping Ag-Co-Cu, and otherimportant mineral deposits (e.g., Baiyangchang Ag-Cu, Jinman Cu deposits, etc.) in the Lanping Mesozoic-Cenozoic Basin, Yunnan Province, China. The tabular ore-bodies and some veins hosted in terrestrial clastic rocks of the Mesozoic-Cenozoic age and no outcropping of igneous rocks in the giant deposits lead to the proposal of syngenetic origin, but the giant mineral deposits are not stratabound (e.g. MVT, sandstone- and Sedex-type). They formed in a continental red basin with intense crust movement. The mineralization is controlled by structures and lithology and occurs in different strata, and no sedimentary nature and no exhalative sediments are identified in the deposits. The deposits show some relations with organic matter (now asphalt and petroleum) and evaporates (gypsum). The middle-low-temperature (mainly 110℃ to 280℃) mineralization took place at a depth of about 0.9 km to 3.1 km during the early Himalayan (58 to 67 Ma). The salinity of ore-forming fluids is surprisingly low (1.6% to 18.0 wt% (NaCl)eq). Affected by the collision of the Indian and Eurasian plates, the mantle is disturbed under the Lanping Basin. The large-scale mineralization is closely linked with the geodynamics of the crust movement, the mantle and mantle-flux upwelling and igneous activity. Giant mineral deposits and their geodynamic setting are unique in the Lanping Basin. 展开更多
关键词 giant Jinding Zn-Pb deposit giant Baiyangping Ag-Co-Cu deposit ore geology geodynamic setting lanping basin Yunnan Province China
下载PDF
Tectonic Setting and Nature of the Provenance of Sedimentary Rocks in Lanping Mesozoic-Cenozoic Basin: Evidence from Geochemistry of Sandstones 被引量:7
6
作者 李志明 刘家军 +3 位作者 胡瑞忠 何明勤 刘玉平 李朝阳 《Chinese Journal Of Geochemistry》 EI CAS 2003年第4期352-360,共9页
The geochemical composition of sandstones in the sedimentary basin is controlled mainly by the tectonic setting of the provenance, and it is therefore possible to reveal the tectonic setting of the provenance and the ... The geochemical composition of sandstones in the sedimentary basin is controlled mainly by the tectonic setting of the provenance, and it is therefore possible to reveal the tectonic setting of the provenance and the nature of source rocks in terms of the geochemical composition of sandstones. The major elements, rare\|earth elements and trace elements of the Mesozoic\|Cenozoic sandstones in the Lanping Basin are studied in this paper, revealing that the tectonic settings of the provenance for Mesozoic\|Cenozoic sedimentary rocks in the Lanping Basin belong to a passive continental margin and a continental island arc. Combined with the data on sedimentary facies and palaeogeography, it is referred that the eastern part of the basin is located mainly at the tectonic setting of the passive continental margin before Mesozoic, whereas the western part may be represented by a continental island arc. This is compatible with the regional geology data. The protoliths of sedimentary rocks should be derived from the upper continental crust, and are composed mainly of felsic rocks, mixed with some andesitic rocks and old sediment components. Therefore, the Lanping Mesozoic\|Cenozoic Basin is a typical continental\|type basin. This provides strong geochemical evidence for the evolution of the paleo\|Tethys and the basin\|range transition. 展开更多
关键词 GEOCHEMISTRY of sandstone tectonic sectting ofprovenance NATURE of source rock lanping Mesozoic—Cenozoic basin
下载PDF
Basin Fluid Mineralization during Multistage Evolution of the Lanping Sedimentary Basin,Southwestern China 被引量:5
7
作者 GU Xuexlang ZHANG Yongmei +1 位作者 DONG Shuyi TANG Juxing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第6期984-995,共12页
The Lanping sedimentary basin has experienced a five-stage evolution since the late Paleozoic: ocean-continent transformation (late Paleozoic to early mid-Triassic); intracontinental rift basin (late mid-Triassic ... The Lanping sedimentary basin has experienced a five-stage evolution since the late Paleozoic: ocean-continent transformation (late Paleozoic to early mid-Triassic); intracontinental rift basin (late mid-Triassic to early Jurassic); down-warped basin (middle to late Jurassic); foreland basin (Cretaceous); and strike-slip basin (Cenozoic). Three major genetic types of Ag-Cu polymetallic ore deposits, including the reworked hydrothermal sedimentary, sedimentary-hydrothermally reworked and hydrothermal vein types, are considered to be the products of basin fluid activity at specific sedimentary-tectonic evolutionary stages. Tectonic differences of the different evolutionary stages resulted in considerable discrepancy in the mechanisms of formation-transportation, migration direction and emplacement processes of the basin fluids, thus causing differences in mineralization styles as well as in genetic types of ore deposit. 展开更多
关键词 polymetallic mineralization basin fluids evolution of sedimentary basin lanping basin Yunnan southwestern China
下载PDF
Metallogeny of the Baiyangping Lead-Zinc Polymetallic Ore Concentration Area, Northern Lanping Basin of Yunnan Province, China 被引量:5
8
作者 WANG Xiaohu SONG Yucai +3 位作者 ZHANG Hongrui LIU Yingchao PAN Xiaofei GUO Tao 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第4期1486-1507,共22页
The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of l... The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment-hosted Pb-Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India-Asia continental coUisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the oreforming elements in the east ore belt are mainly Pb-Zn -Sr-Ag, while Pb-Zn-Ag-Cu-Co elements are dominant in the west ore belt. Comparative analysis of the C-O-Sr-S-Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore- forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb-Zn mineralization age of both ore belts was contemporary and formed in the same metaliogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship. 展开更多
关键词 eastern Tethyan metallogenic domain lanping basin Baiyangping ore concentration area lead-zinc polymetallic ore deposit genesis of deposit
下载PDF
EVOLUTION OF ORE-FORMING FLUIDS AND Ag-Cu POLYMETAL MINERALIZATION IN THE LANPING BASIN, YUNNAN 被引量:1
9
作者 Wang C. S., Tang J. X., Gu X. X. 《地学前缘》 EI CAS CSCD 2000年第S1期409-409,共1页
The Lanping Mesozoic—Cenozoic sedimentary basin, situated in the Middle section of the “Sanjiang" (Nujiang—Lancangjiang—Jinshajiang) area in the east margin of the Tibet plateau, is well known for its large p... The Lanping Mesozoic—Cenozoic sedimentary basin, situated in the Middle section of the “Sanjiang" (Nujiang—Lancangjiang—Jinshajiang) area in the east margin of the Tibet plateau, is well known for its large production of base\|metal sulphide deposits. The worldwide famous super\|large Jinding Pb\|Zn deposit is located in the middle of the basin. The evolution history of the Lanping basin since Mesozoic can be divided into six stages, i.e., ①active continental marginal basin (T 1—T 2); ②back\|arc rift basin (T 3—J 1); ③intracontinental depressive basin (J 2—J 3); ④foreland basin (K); ⑤strike\|slipping and mutual thrusting (E 1—E 3); and ⑥strike\|slipping and pull\|apart basin (N 1\|present). Three main types of Ag\|Cu polymetal deposits are recognized in the basin. Deposits of sedimentary exhalation\|hydrothermal reworking origin (type Ⅰ) are hosted chiefly in limestones, dolomitic limestones, and siliceous rocks of the Upper Triassic Sanhedong Formation (T 3 s ) in Sanshan area. Deposits formed through normal chemical sedimentation in closed to semi\|closed environments (type Ⅱ; e.g., Jinman and Baiyangchang) during the depressive and foreland basin stages occur in various horizons of Jurassic and Cretaceous ages. Hydrothermal reworking on deposits of this type during the Himalayan period are locally pronounced, especially in the west margin of the basin near the Lancangjiang thrust fault. The third deposit type in the basin (type Ⅲ; e.g., Baiyangping and Fulongchang) is the Ag\|bearing tetrahedrite vein deposits occurring almost in all Mesozoic—Cenozoic strata, especially in the Cretaceous. Ore minerals formed during synsedimentary periods of types Ⅰ and Ⅱ are relatively simple and dominated by chalcopyrite and bornite, though sphalerite, galena, pyrite, tetrahedrite and pyrite are also present. In the deposits of type Ⅲ as well as in the ores formed during the hydrothermal reworking period in deposits of type Ⅰ and Ⅱ, ore minerals are extremely complicated and characterized by predominant Ag\|bearing tetrahedrite and other complex sulfosalts of Cu\|Ni\|Co\|Fe\|As\|S and Cu\|Bi\|S series. The associated gangue minerals are mainly quartz, siderite, Fe\|dolomite, barite, and celestite. 展开更多
关键词 basin FLUIDS polymetal MINERALIZATION basin evolut ion lanping basin
下载PDF
Cenozoic evolution of tectono-fluid and metallogenic process in Lanping Basin, western Yunnan Province, Southwest China: Constraints from apatite fission track data 被引量:12
10
作者 李小明 宋友桂 《Chinese Journal Of Geochemistry》 EI CAS 2006年第4期395-400,共6页
Since the Mesozoic, abundant metal and salt deposits have been formed in the Lanping Basin, western Yunnan Province, Southwest China, constituting a well-known hydrothermal ore belt in China. Most of the deposits are ... Since the Mesozoic, abundant metal and salt deposits have been formed in the Lanping Basin, western Yunnan Province, Southwest China, constituting a well-known hydrothermal ore belt in China. Most of the deposits are meso-epithermal hydrothermal deposits. This paper preliminarily deals with the mineralization ages of hydrothermal deposits in the Lanping Basin by using the apatite fission track method, and integrates the spatial distribution of the deposits and their regional geological backgrounds, to give the preliminary viewpoints as follows: (1) the apatite fission track ages acquired range from 19.9 Ma to 52.8 Ma, much younger than those of their host strata, so they may be considered to be mineralization ages, which represent the late mineralization period; (2) the apatite fission track ages tend to become younger from the west to the middle of the basin, indicating that the latest evolution of tectono-fluid and/or metallogenic processes of the middle basin ended later than that in the west; (3) in the Paleogene, most of the Cu deposits were formed in the western part of the basin; (4) the major metallogenic processes occur between the Paleogene and the Neogene, because the eastern and western edges of the basin were subducted into and collided with its bilateral continental blocks, respectively, and the central fault was strongly activated, which led to the processes of large-scale ore-forming fluids, and their differentiation and transport because of the variation of their physical and chemical properties. Having been squeezed and uplifted, the Lanping Basin became an intermontane basin that contains many kinds of fluid traps resulting in the formation of different types of ore deposits (for example, Pb-Zn, Cu, Ag) of different scales in the middle of the basin. Simultaneously, the fluids with volatile elements such as Hg, Sb and As were transported upwards along the central fault system and diffused into its subordinate fractures, thus leading to the metallogenic processes of Hg, Sb and As in the eastern composite anticline of the Lanping Basin; (5) and later, these ore deposits experienced reformation and oxidization. To summarize,deep giant faults were active in the basin, and metallogenic processes were constrained by the evolution of tectono-fluids in the Lanping Basin. Simultaneously, the occurrence of the metallogenic processes made the nature of fluid and the structural environment change, which led to returning and recycling of the fluids. Multi-stage and zonational metallogenic processes are the characteristics of the ore deposits in the Lanping Basin. 展开更多
关键词 裂变痕迹 时空框架 云南西部 矿化作用
下载PDF
Provenance and salt structures of gypsum formations in Pb-Zn ore-bearing Lanping basin,Southwest China 被引量:1
11
作者 ZHANG Zhi-bo ZHU Zhi-jun +4 位作者 LI Huan JIANG Wei-cheng WANG Wen-feng XU Ying LI Li-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第6期1828-1845,共18页
Large-scale gypsum rocks associated with world-class Pb-Zn ore formations are widely distributed in the Lanping Basin,Sowthwest China.Geochemical studies alongside field investigations were conducted in this study to ... Large-scale gypsum rocks associated with world-class Pb-Zn ore formations are widely distributed in the Lanping Basin,Sowthwest China.Geochemical studies alongside field investigations were conducted in this study to determine the source and evolutionary processes of the gypsum rocks in this area.The gypsum sequences in the Lanping Basin developed in two formations:the Triassic Sanhedong Formation and the Paleogene Yunlong Formation.The gypsum hosted in the former displays a primary thick-banded structure withδ34SV-CDT values in the range of 14.5‰−14.8‰.Combined with the 87Sr/86Sr values(0.707737−0.707783)of limestone,it can be suggested that the Sanhedong Formation is of marine origin.In contrast,the gypsum from the Paleogene Yunlong Formation is characterized by the dome,bead and diapiric salt structures,wider range of both 87Sr/86Sr(0.707695−0.708629)andδ34SV-CDT values(9.6‰−17‰),thus indicating a marine source but with the input of continental materials.The initial layered salt formations were formed by chemical deposition in a basin and were later intensely deformed by collisional orogeny during the Himalaya period.As a result,variable salt structures were formed.We hereby propose an evolutionary model to elucidate the genesis of the gypsum formations in the Lanping Basin. 展开更多
关键词 lanping basin GYPSUM marine sediment Sr–S isotopes salt structure
下载PDF
Zinc, copper, and strontium isotopic variability in the Baiyangping Cu–Pb–Zn–Ag polymetallic ore field, Lanping Basin, Southwest China 被引量:1
12
作者 Caixia Feng Shen Liu +3 位作者 Guoxiang Chi Xianwu Bi Ruizhong Hu Ian MCoulson 《Acta Geochimica》 EI CAS CSCD 2021年第4期557-574,共18页
The Baiyangping Cu-Ag polymetallic ore district is located in the northern part of the Lanping-Simao foreland fold belt,between the Jinshajiang-Ailaoshan and Lancangjiang faults,and the deposit can be divided into eas... The Baiyangping Cu-Ag polymetallic ore district is located in the northern part of the Lanping-Simao foreland fold belt,between the Jinshajiang-Ailaoshan and Lancangjiang faults,and the deposit can be divided into eastern and western ore zones.Based upon microscope observation of ore minerals and analysis of zinc,copper,and strontium isotope composition,we conclude that:(1)the zinc isotopic compositions of sphalerite from the eastern and western ore belt of the Baiyangping polymetallic ore deposits are enriched in both the heavy(-0.09‰ to+0.15‰) and light(-0.19‰ to-0.01‰)zinc isotopes.Rayleigh fractionation is likely the additional factor controlling the observed temporal and spatial variations in zinc isotopes in the two studied ore zones.The zinc isotopic composition in the Baiyangping polymetallic Pb-Zn deposits may have the same fractionation as that of magmatic-hydrothermal,VHMS,SEDEX,and MVT deposits,as demonstrated by geological and other geochemical evidence;(2) the range of δ^(65)Cu in massive tetrahedrite is from-0.06‰ to+0.12 ‰ that relates to the early stages of ore-formation,which are higher than that of venial chalcopyrite(from-0.72‰ to-0.07‰)formed at a late ore-forming stage in the western ore belt.Different ore-forming stages and alteration or leaching processes are likely the main factors controlling the observed variations in copper isotopes in the western ore zone;(3) the ^(87)Sr/^(86)Sr value of hydrothermal calcite in eastern(0.7080-0.7093) and western(0.7085-0.7113) ore belt suggested that mineralization of early calcite,with^(87)Sr/^(86)Sr values much higher than in ancient Late Triassic seawater,may be related to recrystallization from a radiogenic Sr-rich or silicifying fluid,either from the strata that the ore-forming fluid flows through or from other fluids. 展开更多
关键词 Zn-Cu-Sr isotopic variation Cu-Pb-Zn-Ag poly-metallic ore deposit Baiyangping lanping basin
下载PDF
THE EVOLUTION OF LANPING RIFT BASIN FROM LADINIAN IN MIDDLE TRIASSIC EPOCH TO EARLY JURASSIC EPOCH
13
作者 Zhu Lidong,Wang Chengshan,Liu Dengzhong 《地学前缘》 EI CAS CSCD 2000年第S1期290-290,共1页
Lanping basin was a massif (land massif) in late Palaeozoic Era. The ocean of Jinshajiang separated it from Yangtze plate in east. Lancangjiang ocean separated it from Yunnan—Tibet plate in west. From late Permian Ep... Lanping basin was a massif (land massif) in late Palaeozoic Era. The ocean of Jinshajiang separated it from Yangtze plate in east. Lancangjiang ocean separated it from Yunnan—Tibet plate in west. From late Permian Epoch, the oceanic crust of Jinshajiang subduced the west from east, the one of Lancangjiang down went the east from west, and then the Yunnan—Tibet ancient land gradually closed to the Yangtze. In the end of the Permian Period, two continents and Lanping plate touched together, and the evolution history of the Paleotethys was end. Hercynian orogenic belt in the east and west sides of Lanping had volcanic rock colliding in early—middle Triassic Epoch. In Ladinian in middle Triassic and Carnian in late Triassic, the north side of Lanping basin formed the serial volcanic rock of spilite—quartz keratophyre because mantle\|derived magma causing by delamination rose and mixed with the constituent of continental crust. The volcanic rock overlapped the middle Triassic and late Palaeozoic stratum in angular unconformity. It was the feature of double peak or evolution from the basic to the acid. The race element distribution of volcanic rock was same as the one of tholeiite in island and inter\|arc basin. The rate of lead isotope of the volcanic rock was much higher. These points all distributed above the NHRL in Pb\|Pb. This indicated that the Pb of volcanic rock was the mantle\|derived magma mixed with crust one. The large\|area progression in Lanping rift basin begun in late Carnian.. The east side in Lanping basin developed the sedimentary system that was granule gravel (grit) rock in border facies—limestone in beach facies—black shale, and the middle had black shale, banded siliceous rock, brecciform limestone in late Carnian to Norian. The geochemistry research of siliceous rock showed that the genesis of the chert was hot water. The development of brecciform limestone was related with action of central\|axis rift. The Lanping rift basin went into consuming stage in Rhaetian Epoch of the late Triassic. The basin developed clastic rock bearing coal of continental\|oceanic alternation facies. In early Jurassic, the sedimentary area atrophied further, and the fine lacustrine sediment whose thickness was not great developed in the east of central\|axis. The west stratum of the basin in late Triassic Epoch touched directly with the one in middle Jurassic. Lanping basin was going into another evolution stage that was down\|warped basin. 展开更多
关键词 lanping RIFT basin LADINIAN in MIDDLE TRIASSIC to early JU rassic EPOCH
下载PDF
A Cretaceous Desert-Playa Sedimentary System Controlled the Potash Formation in the Simao Basin 被引量:5
14
作者 WU Chihua LIU Chenglin +2 位作者 SHEN Lijian WANG Jiuyi ZHANG Hua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第3期1143-1144,共2页
Objective The Simao Basin in Yunnan Province has developed Cretaceous evaporite-bearing clastic deposits, including the Mangang and Mengyejing Formations which were originally interpreted as fluvial and lacustrine dep... Objective The Simao Basin in Yunnan Province has developed Cretaceous evaporite-bearing clastic deposits, including the Mangang and Mengyejing Formations which were originally interpreted as fluvial and lacustrine deposits. The Mangang Fm. composed of well-rounded quartz sandstones, were commonly considered as the bottom part of the Mengyejing salt series. Dttring last decades, 展开更多
关键词 A Cretaceous Desert-Playa Sedimentary System Controlled the Potash Formation in the simao basin is for as were that of
下载PDF
Provenance and Paleogeography of the Late Cretaceous Mengyejing Formation,Simao Basin,Southeastern Tibetan Plateau 被引量:3
15
作者 WANG Licheng LIU Chenglin +1 位作者 GAO Xiang ZHANG Hua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第S1期255-256,共2页
The Mengyejing potash salt deposit(MPSD)is the only pre-Quaternary potash salt deposit in China.The MPSD is located in the southern Simao Basin,southeastern Tibetan Plateau.The MPSD,along with rock salts and clastic r... The Mengyejing potash salt deposit(MPSD)is the only pre-Quaternary potash salt deposit in China.The MPSD is located in the southern Simao Basin,southeastern Tibetan Plateau.The MPSD,along with rock salts and clastic rocks, 展开更多
关键词 Si Th Provenance and Paleogeography of the Late Cretaceous Mengyejing Formation simao basin Southeastern Tibetan Plateau ROCK EU
下载PDF
Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau 被引量:16
16
作者 ZiQi Zhang Yuan Gao 《Earth and Planetary Physics》 CSCD 2019年第1期69-84,共16页
In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use tele... In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use teleseismic waveform data of 475 events from 97 temporary broadband seismometers deployed by ChinArray Phase I to obtain crustal thicknesses and Poisson's ratios within the Chuxiong-Simao Basin and adjacent area, employing an improved method in which the receiver functions are processed through a resonance-removal filter, and the H-κ stacking is time-corrected.Results show that the crustal thickness ranges from 30 to 55 km in the study area, reaching its thickest value in the northwest and thinning toward southwest, southeast and northeast.The apparent variation of crustal thickness around the Red River Fault supports the view of southeastern escape of the Tibetan Plateau.Relatively thin crustal thickness in the zone between Chuxiong City and the Red River Fault indicates possible uplift of mantle in this area.The positive correlation between crustal thickness and Poisson's ratio is likely to be related to lower crust thickening.Comparison of results obtained from different methods shows that the improved method used in our study can effectively remove the reverberation effect of sedimentary layers. 展开更多
关键词 receiver functions SEDIMENTARY layer SOUTHEAST MARGIN of the Tibetan Plateau CRUSTAL thickness Poisson's ratio Chuxiong-simao basin
下载PDF
New Sr Isotope Evidence to Support the Material Source of the Mengyejing Potash Deposit in the Simao Basin from Ancient Marine Halite or Residual Sea 被引量:7
17
作者 MIAO Zhongying 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第2期866-867,共2页
Objective The Mengyejing potash deposit in the Simao Basin is the only producing area of solid potash at present in China. There is still controversy about the material source and distribution of the potash in this d... Objective The Mengyejing potash deposit in the Simao Basin is the only producing area of solid potash at present in China. There is still controversy about the material source and distribution of the potash in this deposit (Shen Lijian et al., 2017), which has influenced not only the prospecting direction and efficiency but also the understanding of the control of Tethys tectonic evolution on the formation and distribution of the mineral resources. This work analyzed the Sr isotope geochemical characteristics of evaporites from core samples in the well MZK-3 in order to further clarify the material source and to explore the potash distribution in the Simao Basin. 展开更多
关键词 Sr New Sr Isotope Evidence to Support the Material Source of the Mengyejing Potash Deposit in the simao basin from Ancient Marine Halite or Residual Sea
下载PDF
Clay Mineralogical and Geochemical Studies of Detrital Rocks of the Upper Cretaceous Salt-bearing Strata,Simao Basin,SW China:Implication for Provenance and Source Weathering 被引量:1
18
作者 MIAO Weiliang MA Haizhou +2 位作者 ZHANG Xiying LI Yongshou SHI Haiyan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第S1期235-237,共3页
1 Introduction Geological studies established on several sections in Lanping-Simao basin have shown that the salt-bearing strata of Mengyejing formation(Yunlong Fm.in Lanping basin)are constituted by an alternation of... 1 Introduction Geological studies established on several sections in Lanping-Simao basin have shown that the salt-bearing strata of Mengyejing formation(Yunlong Fm.in Lanping basin)are constituted by an alternation of salt layers and interbedded facies.The latter consists mainly of mudstones,and mudstone-rich conglomerate.The mineralogy and geochemistry of salt-bearing beds and 展开更多
关键词 La Clay Mineralogical and Geochemical Studies of Detrital Rocks of the Upper Cretaceous Salt-bearing Strata simao basin SW China rock
下载PDF
Au(Cu)Ore-Fluid Dynamics in Bordering OrogenicBelt of Simao-Nanping Basin, Yunnan Province
19
作者 CaoZhimin XuZemin 《Journal of China University of Geosciences》 SCIE CSCD 2002年第1期53-57,72,共6页
The paleohydrogeologic condition and the tectonic stress field during the mineralization epoch of the Au (Cu) ore fluid in the bordering orogenic belt of Simao-Nanping basin reveal that the complicated paleohydrodynam... The paleohydrogeologic condition and the tectonic stress field during the mineralization epoch of the Au (Cu) ore fluid in the bordering orogenic belt of Simao-Nanping basin reveal that the complicated paleohydrodynamic condition during the Devonian-Carboniferous period in the northern Ailao-shan was favorable for the pre-enrichment of the mineral elements, and that the migration and the distribution of the groundwater were controlled by the tectonic stress field and driven by temperature and hydraulic gradients during the Yanshan-Himalayan movement epoch. Therefore, the determination of the low-pressure zone of the maximum principal stress is effective for the location of the Au deposits (ore spots). 展开更多
关键词 Au (Cu) deposits ore-fluid orogenic belt border of simao-Nanping basin Yunnan Province.
下载PDF
三维地震和重力在思茅盆地固体钾盐勘探中的应用
20
作者 苗忠英 郑绵平 +4 位作者 黄元溢 严加永 朱永山 娄鹏程 刘圆应 《矿床地质》 CAS CSCD 北大核心 2024年第5期1149-1163,共15页
钾盐是中国紧缺的战略性矿产资源,思茅盆地是实现国内固体钾盐找矿突破最现实的区域之一。然而,复杂的构造条件及岩盐特殊的理化性质制约了找矿突破。为探索有效的找矿方法,笔者首次将三维地震应用到钾盐找矿实践中,同时开展了重力等其... 钾盐是中国紧缺的战略性矿产资源,思茅盆地是实现国内固体钾盐找矿突破最现实的区域之一。然而,复杂的构造条件及岩盐特殊的理化性质制约了找矿突破。为探索有效的找矿方法,笔者首次将三维地震应用到钾盐找矿实践中,同时开展了重力等其他地球物理方法综合勘查,研究结果表明:(1)三维地震数据处理需重点关注低频面波的压制;(2)三维地震属性中的瞬时振幅、道积分、Prg*CIP在识别2000 m以深的盐体边界方面有独特的优势,据此预测顶面埋深1700~2800 m、面积为4.28 km^(2)的盐体已被MK-3井钻探证实;(3)在山区应用地震探测钾盐尚处于探索阶段,数据采集、处理、解释方面还需要不断积累资料和经验;(4)重力探测钾盐的理论基础可靠,浅层盐体赋存区全部存在重力负异常;(5)第四系、新近系等与盐体密度相近的地质体、地层形态变化或断层也可引起重力负异常,此时须进一步结合其他地球物理手段和地质规律方可判断负异常区内的含矿性。三维地震和重力是以往思茅盆地内钾盐找矿实践中应用效果较好的两种物探手段,由于地球物理资料的多解性以及不同技术手段成本的差异性,在今后的找矿实践中可综合基础地质、矿床地质、探测效果及效率、经济性等因素使用。 展开更多
关键词 地震勘探 重力勘探 地球物理 钾盐 思茅盆地
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部