The unsteady flow of an incompressible fractional Maxwell fluid between two infinite coaxial cylinders is studied by means of integral transforms. The motion of the fluid is due to the inner cylinder that applies a ti...The unsteady flow of an incompressible fractional Maxwell fluid between two infinite coaxial cylinders is studied by means of integral transforms. The motion of the fluid is due to the inner cylinder that applies a time dependent tor- sional shear to the fluid. The exact solutions for velocity and shear stress are presented in series form in terms of some generalized functions. They can easily be particularized to give similar solutions for Maxwell and Newtonian fluids. Fi- nally, the influence of pertinent parameters on the fluid motion, as well as a comparison between models, is highlighted by graphical illustrations.展开更多
The velocity field and the associated shear stress corresponding to the longitudinal oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cylinders, are determined by means of th...The velocity field and the associated shear stress corresponding to the longitudinal oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. Initially, the fluid and cylinders are at rest and at t = 0+ both cylinders suddenly begin to oscillate along their common axis with simple harmonic motions having angular frequencies Ω1 and Ω2. The solutions that have been obtained are presented under integral and series forms in terms of the generalized G and R functions and satisfy the governing differential equation and all imposed initial and boundary conditions. The respective solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for the similar flow of ordinary second grade fluid and Newtonian fluid are also obtained as limiting cases of our general solutions. At the end, the effect of different parameters on the flow of ordinary second grade and generalized second grade fluid are investigated graphically by plotting velocity profiles.展开更多
The present investigation is concerned with an axi-symmetric problem in the electromagnetic micropolar thermoelastic half-space whose surface is subjected to the mechanical or thermal source. Laplace and Hankel transf...The present investigation is concerned with an axi-symmetric problem in the electromagnetic micropolar thermoelastic half-space whose surface is subjected to the mechanical or thermal source. Laplace and Hankel transform techniques are used to solve the problem. Various types of sources are taken to illustrate the utility of the approach. Integral transforms are inverted by using a numerical technique to obtain the components of stresses, temperature distribution, and induced electric and magnetic fields. The expressions of these quantities are illustrated graphically to depict the magnetic effect for two different generalized thermoelasticity theories, i.e., Lord and Shulman (L-S theory) and Green and Lindsay (G-L theory). Some particular interesting cases are also deduced from the present investigation.展开更多
The velocity field and the associated shear stress corresponding to the torsional oscillatory flow of a second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and H...The velocity field and the associated shear stress corresponding to the torsional oscillatory flow of a second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. At time t = 0, the fluid and both the cylinders are at rest and at t = 0 + , cylinders suddenly begin to oscillate around their common axis in a simple harmonic way having angular frequencies ω 1 and ω 2 . The obtained solutions satisfy the governing differential equation and all imposed initial and boundary conditions. The solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for Newtonian fluid are also obtained as limiting cases of our general solutions.展开更多
This paper is concerned with the generation of gravity waves due to prescribed initial axisymmetric disturbances created at the surface of an ice sheet covering the ocean with a porous bottom.The ice cover is modeled ...This paper is concerned with the generation of gravity waves due to prescribed initial axisymmetric disturbances created at the surface of an ice sheet covering the ocean with a porous bottom.The ice cover is modeled as a thin elastic plate,and the bottom porosity is described by a real parameter.Using linear theory,the problem is formulated as an initial value problem for the velocity potential describing the motion.In the mathematical analysis,the Laplace and Hankel transform techniques have been used to obtain the depression of the ice-covered surface in the form of a multiple infnite integral.This integral is evaluated asymptotically by the method of stationary phase twice for a long time and a large distance from the origin.Simple numerical computations are performed to illustrate the efect of the ice-covered surface and bottom porosity on the surface elevation,phase velocity,and group velocity of the surface gravity waves.Mainly the far-feld behavior of the progressive waves is observed in two diferent cases,namely initial depression and an impulse concentrated at the origin.From graphical representations,it is clearly visible that the presence of ice cover and a porous bottom decreases the wave amplitude.Due to the porous bottom,the amplitude of phase velocity decreases,whereas the amplitude of group velocity increases.展开更多
文摘The unsteady flow of an incompressible fractional Maxwell fluid between two infinite coaxial cylinders is studied by means of integral transforms. The motion of the fluid is due to the inner cylinder that applies a time dependent tor- sional shear to the fluid. The exact solutions for velocity and shear stress are presented in series form in terms of some generalized functions. They can easily be particularized to give similar solutions for Maxwell and Newtonian fluids. Fi- nally, the influence of pertinent parameters on the fluid motion, as well as a comparison between models, is highlighted by graphical illustrations.
文摘The velocity field and the associated shear stress corresponding to the longitudinal oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. Initially, the fluid and cylinders are at rest and at t = 0+ both cylinders suddenly begin to oscillate along their common axis with simple harmonic motions having angular frequencies Ω1 and Ω2. The solutions that have been obtained are presented under integral and series forms in terms of the generalized G and R functions and satisfy the governing differential equation and all imposed initial and boundary conditions. The respective solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for the similar flow of ordinary second grade fluid and Newtonian fluid are also obtained as limiting cases of our general solutions. At the end, the effect of different parameters on the flow of ordinary second grade and generalized second grade fluid are investigated graphically by plotting velocity profiles.
文摘The present investigation is concerned with an axi-symmetric problem in the electromagnetic micropolar thermoelastic half-space whose surface is subjected to the mechanical or thermal source. Laplace and Hankel transform techniques are used to solve the problem. Various types of sources are taken to illustrate the utility of the approach. Integral transforms are inverted by using a numerical technique to obtain the components of stresses, temperature distribution, and induced electric and magnetic fields. The expressions of these quantities are illustrated graphically to depict the magnetic effect for two different generalized thermoelasticity theories, i.e., Lord and Shulman (L-S theory) and Green and Lindsay (G-L theory). Some particular interesting cases are also deduced from the present investigation.
文摘The velocity field and the associated shear stress corresponding to the torsional oscillatory flow of a second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. At time t = 0, the fluid and both the cylinders are at rest and at t = 0 + , cylinders suddenly begin to oscillate around their common axis in a simple harmonic way having angular frequencies ω 1 and ω 2 . The obtained solutions satisfy the governing differential equation and all imposed initial and boundary conditions. The solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for Newtonian fluid are also obtained as limiting cases of our general solutions.
文摘This paper is concerned with the generation of gravity waves due to prescribed initial axisymmetric disturbances created at the surface of an ice sheet covering the ocean with a porous bottom.The ice cover is modeled as a thin elastic plate,and the bottom porosity is described by a real parameter.Using linear theory,the problem is formulated as an initial value problem for the velocity potential describing the motion.In the mathematical analysis,the Laplace and Hankel transform techniques have been used to obtain the depression of the ice-covered surface in the form of a multiple infnite integral.This integral is evaluated asymptotically by the method of stationary phase twice for a long time and a large distance from the origin.Simple numerical computations are performed to illustrate the efect of the ice-covered surface and bottom porosity on the surface elevation,phase velocity,and group velocity of the surface gravity waves.Mainly the far-feld behavior of the progressive waves is observed in two diferent cases,namely initial depression and an impulse concentrated at the origin.From graphical representations,it is clearly visible that the presence of ice cover and a porous bottom decreases the wave amplitude.Due to the porous bottom,the amplitude of phase velocity decreases,whereas the amplitude of group velocity increases.