The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic diff...The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic differential equation. It is changed into an elliptic one by Laplace transform to eliminate time varia-ble. The image function of water head H can be solved by BEM. We derived the boundary integral equation ofthe transformed variable H and the discretization form of it, so that there is no need to discretize the bounda-ries of well walls and it becomes easier to solve the groundwater head H by numerical inversion.展开更多
In this paper, we proposed new results in quadruple Laplace transform and proved some properties concerned with quadruple Laplace transform. We also developed some applications based on these results and solved homoge...In this paper, we proposed new results in quadruple Laplace transform and proved some properties concerned with quadruple Laplace transform. We also developed some applications based on these results and solved homogeneous as well as non-homogeneous partial differential equations involving four variables. The performance of quadruple Laplace transform is shown to be very encouraging by concrete examples. An elementary table of quadruple Laplace transform is also provided.展开更多
We intend to realize the step-up and step-down operators of the potential V (x) = V1 e 2βx+V2 e βx. It is found that these operators satisfy the commutation relations for the SU(2) group. We find the eigenfunctions ...We intend to realize the step-up and step-down operators of the potential V (x) = V1 e 2βx+V2 e βx. It is found that these operators satisfy the commutation relations for the SU(2) group. We find the eigenfunctions and the eigenvalues of the potential by using the Laplace transform approach to study the Lie algebra satisfied the ladder operators of the potential under consideration. Our results are similar to the ones obtained for the Morse potential (β→β).展开更多
Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then trans...Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.展开更多
This paper presents three boundary meshless methods for solving problems of steady-state and transient heat conduction in nonlinear functionally graded materials(FGMs).The three methods are,respectively,the method of ...This paper presents three boundary meshless methods for solving problems of steady-state and transient heat conduction in nonlinear functionally graded materials(FGMs).The three methods are,respectively,the method of fundamental solution(MFS),the boundary knot method(BKM),and the collocation Trefftz method(CTM)in conjunction with Kirchhoff transformation and various variable transformations.In the analysis,Laplace transform technique is employed to handle the time variable in transient heat conduction problem and the Stehfest numerical Laplace inversion is applied to retrieve the corresponding time-dependent solutions.The proposed MFS,BKM and CTM are mathematically simple,easyto-programming,meshless,highly accurate and integration-free.Three numerical examples of steady state and transient heat conduction in nonlinear FGMs are considered,and the results are compared with those from meshless local boundary integral equation method(LBIEM)and analytical solutions to demonstrate the effi-ciency of the present schemes.展开更多
Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for ...Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.展开更多
In this article, we prove that viscosity solutions of the parabolic inhomogeneous equationsn+p/put-△p^Nu=f(x,t)can be characterized using asymptotic mean value properties for all p ≥ 1, including p = 1 and p = ∞...In this article, we prove that viscosity solutions of the parabolic inhomogeneous equationsn+p/put-△p^Nu=f(x,t)can be characterized using asymptotic mean value properties for all p ≥ 1, including p = 1 and p = ∞. We also obtain a comparison principle for the non-negative or non-positive inhomogeneous term f for the corresponding initial-boundary value problem and this in turn implies the uniqueness of solutions to such a problem.展开更多
The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the ...The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the two coupled governing equations of pore-water and pore-air pressures into an equivalent set of partial differential equations (PDFs), which are easily solved by the Laplace transform method. Then, the pore-water pressure, pore-air pressure, and soil settlement are obtained in the Laplace domain. The Crump method is adopted to perform the inverse Laplace transform in order to obtain the semi-analytical solutions in the time domain. It is shown that the proposed solutions are more applicable to various types of boundary conditions and agree well with the existing solutions from the literature. Several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with single, double, mixed, and semi-permeable drainage boundaries. The changes in the pore-air and pore-water pres- sures and the soil settlement with the time factor at different values of the semi-permeable drainage boundary parameters are illustrated. In addition, parametric studies are con- ducted on the pore-air and pore-water pressures at different ratios (the air permeability coefficient to the water permeability coefficient) and depths.展开更多
General exact solutions in terms of wavelet expansion are obtained for multi- term time-fractional diffusion-wave equations with Robin type boundary conditions. By proposing a new method of integral transform for solv...General exact solutions in terms of wavelet expansion are obtained for multi- term time-fractional diffusion-wave equations with Robin type boundary conditions. By proposing a new method of integral transform for solving boundary value problems, such fractional partial differential equations are converted into time-fractional ordinary differ- ential equations, which are further reduced to algebraic equations by using the Laplace transform. Then, with a wavelet-based exact formula of Laplace inversion, the resulting exact solutions in the Laplace transform domain are reversed to the time-space domain. Three examples of wave-diffusion problems are given to validate the proposed analytical method.展开更多
基金supported by the National Natural Science Foundation of China
文摘The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic differential equation. It is changed into an elliptic one by Laplace transform to eliminate time varia-ble. The image function of water head H can be solved by BEM. We derived the boundary integral equation ofthe transformed variable H and the discretization form of it, so that there is no need to discretize the bounda-ries of well walls and it becomes easier to solve the groundwater head H by numerical inversion.
文摘In this paper, we proposed new results in quadruple Laplace transform and proved some properties concerned with quadruple Laplace transform. We also developed some applications based on these results and solved homogeneous as well as non-homogeneous partial differential equations involving four variables. The performance of quadruple Laplace transform is shown to be very encouraging by concrete examples. An elementary table of quadruple Laplace transform is also provided.
基金supported by the Scientific and Technical Research Council of Turkey
文摘We intend to realize the step-up and step-down operators of the potential V (x) = V1 e 2βx+V2 e βx. It is found that these operators satisfy the commutation relations for the SU(2) group. We find the eigenfunctions and the eigenvalues of the potential by using the Laplace transform approach to study the Lie algebra satisfied the ladder operators of the potential under consideration. Our results are similar to the ones obtained for the Morse potential (β→β).
文摘Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.
文摘This paper presents three boundary meshless methods for solving problems of steady-state and transient heat conduction in nonlinear functionally graded materials(FGMs).The three methods are,respectively,the method of fundamental solution(MFS),the boundary knot method(BKM),and the collocation Trefftz method(CTM)in conjunction with Kirchhoff transformation and various variable transformations.In the analysis,Laplace transform technique is employed to handle the time variable in transient heat conduction problem and the Stehfest numerical Laplace inversion is applied to retrieve the corresponding time-dependent solutions.The proposed MFS,BKM and CTM are mathematically simple,easyto-programming,meshless,highly accurate and integration-free.Three numerical examples of steady state and transient heat conduction in nonlinear FGMs are considered,and the results are compared with those from meshless local boundary integral equation method(LBIEM)and analytical solutions to demonstrate the effi-ciency of the present schemes.
基金Project supported by the National Natural Science Foundation of China (No. 12272323)。
文摘Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.
基金supported by the National Natural Science Foundation of China(11071119,11171153)
文摘In this article, we prove that viscosity solutions of the parabolic inhomogeneous equationsn+p/put-△p^Nu=f(x,t)can be characterized using asymptotic mean value properties for all p ≥ 1, including p = 1 and p = ∞. We also obtain a comparison principle for the non-negative or non-positive inhomogeneous term f for the corresponding initial-boundary value problem and this in turn implies the uniqueness of solutions to such a problem.
基金Project supported by the National Natural Science Foundation of China(Nos.41630633 and11672172)
文摘The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the two coupled governing equations of pore-water and pore-air pressures into an equivalent set of partial differential equations (PDFs), which are easily solved by the Laplace transform method. Then, the pore-water pressure, pore-air pressure, and soil settlement are obtained in the Laplace domain. The Crump method is adopted to perform the inverse Laplace transform in order to obtain the semi-analytical solutions in the time domain. It is shown that the proposed solutions are more applicable to various types of boundary conditions and agree well with the existing solutions from the literature. Several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with single, double, mixed, and semi-permeable drainage boundaries. The changes in the pore-air and pore-water pres- sures and the soil settlement with the time factor at different values of the semi-permeable drainage boundary parameters are illustrated. In addition, parametric studies are con- ducted on the pore-air and pore-water pressures at different ratios (the air permeability coefficient to the water permeability coefficient) and depths.
基金Project supported by the National Natural Science Foundation of China(Nos.11032006,11072094,and 11121202)the Ph.D.Program Foundation of Ministry of Education of China(No.20100211110022)+2 种基金the National Key Project of Magneto-Constrained Fusion Energy Development Program(No.2013GB110002)the Fundamental Research Funds for the Central Universities(Nos.lzujbky-2012-202 and lzujbky-2013-1)the Scholarship Award for Excellent Doctoral Student Granted by Lanzhou University
文摘General exact solutions in terms of wavelet expansion are obtained for multi- term time-fractional diffusion-wave equations with Robin type boundary conditions. By proposing a new method of integral transform for solving boundary value problems, such fractional partial differential equations are converted into time-fractional ordinary differ- ential equations, which are further reduced to algebraic equations by using the Laplace transform. Then, with a wavelet-based exact formula of Laplace inversion, the resulting exact solutions in the Laplace transform domain are reversed to the time-space domain. Three examples of wave-diffusion problems are given to validate the proposed analytical method.