Abundance, biomass and composition of the ice algal and phytoplankton communities were investigated in the southeastern Laptev Sea in spring 1999. Diatoms dominated the algal communities and pennate diatoms dominated ...Abundance, biomass and composition of the ice algal and phytoplankton communities were investigated in the southeastern Laptev Sea in spring 1999. Diatoms dominated the algal communities and pennate diatoms dominated the diatom population. 12 dominant algal species occurred within sea ice and underlying water column, including Fragilariopsis oceanica, F. cylindrus, Nitzschla frigida, N. promare, Achnanthes taeniata, Nitzschia neofrigida, Navicula pelagica , N. vanhoef fenii, N. septentrionalls, Melosiraarctica , Clindrotheca closterium and Pyramimonas sp. The algal abundance of bottom 10cm sea ice varied between 14.6 and 1562.2 × 10^4 cells 1^-1 with an average of 639.0 × 10^4 cells 1^-1 , and the algal biomass ranged from 7.89 to 2093.5μg C 1^-1 with an average of 886.9μg C1^-1 , which were generally one order of magnitude higher than those of sub-bottom ice and two orders of magnitude higher than those of underlying surface water. The integrated algal abundance and biomass of lowermost 20 cm ice column were averagely 7.7 and 12.2 times as those of upper 20 m water column, respectively, suggesting that the ice algae might play an important role in maintaining the coastal marine ecosystem before the thawing of sea ice. Ice algae influenced the phytoplankton community of the underlying water column. However, the "seeding" of ice algae for phytoplankton bloom was negligible because of the low phytoplankton biomass within the underlying water column.展开更多
We employ elevation data from the Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) to investigate surface changes across the Lena Delta and sea ice of the coastal Laptev Sea, ...We employ elevation data from the Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) to investigate surface changes across the Lena Delta and sea ice of the coastal Laptev Sea, Siberia during winters of 2003 through 2008. We compare ICESat GLAS-derived elevation changes on sea ice and the Bykovskaya and Sardakhskaya Channels with datum-corrected tide gauge height measurements from Danai, Sannikova and Tiksi stations. We find the coastal sea ice and large inland ice covered channels elevation changes are in phase with the tide-height changes on a same month-year and datum-controlled basis. Furthermore, we find elevation change on tundra drained lake basins to be +0.03 ± 0.02 m, on average. These findings indicate that ICESat GLAS is capable of detection of tide fluxes of ice covered coastal rivers, and with a small error range, it is suitable for investigations of active-layer and permafrost dynamics associated with seasonal freezing (heave) and thawing (subsidence) using repeat-location profiles.展开更多
The range of the Greenland halibut Reinhardtius hippoglossoides(Walbaum,1792)includes vast areas in the northern parts of the Atlantic and Pacific oceans,as well as the seas of the Arctic Ocean.Despite its commercial ...The range of the Greenland halibut Reinhardtius hippoglossoides(Walbaum,1792)includes vast areas in the northern parts of the Atlantic and Pacific oceans,as well as the seas of the Arctic Ocean.Despite its commercial importance and decades of study,many aspects of its life cycle and reproduction remain poorly understood.Here,we evaluate the size distribution of Greenland halibut in the catches of research surveys in the Barents,Kara,and Laptev seas and conduct micro-and macroscopic studies of their gonads in the Laptev Sea.The size of Greenland halibut individuals increases from west to east,which is associated with the settling of pelagic juveniles and the subsequent residency of growing individuals near their settling sites.To the greatest extent,this size imbalance is manifested in the areas most remote from spawning grounds,i.e.the Kara and Laptev seas.The process of maturation in large individuals of Greenland halibut in the Arctic seas is characterized by a state of inhibitionwaiting in the early stages of gametogenesis(previtellogenesis).The data obtained indicate that Greenland halibut in the North Atlantic and the Siberian Arctic have a continuous range.The continental slope of the Barents Sea is a spawning and maturing ground,while the northern parts of the Barents and Kara seas,as well as the continental slope of the Laptev Sea,are feeding grounds for juveniles.The results of this study might serve as a necessary basis for monitoring condition of halibut stocks as well as for reallocation of the total allowable catch between countries that exploited them in the Norwegian and Barents seas.展开更多
基金supported by the National Nature Science Foundation of China(30270112,40006010)the Basic Research Special Project of Chinese Science and Technology Administration(2003DEB5J057)Oceanic Science Foundation of State 0ceanic Administration of China(2003122).
文摘Abundance, biomass and composition of the ice algal and phytoplankton communities were investigated in the southeastern Laptev Sea in spring 1999. Diatoms dominated the algal communities and pennate diatoms dominated the diatom population. 12 dominant algal species occurred within sea ice and underlying water column, including Fragilariopsis oceanica, F. cylindrus, Nitzschla frigida, N. promare, Achnanthes taeniata, Nitzschia neofrigida, Navicula pelagica , N. vanhoef fenii, N. septentrionalls, Melosiraarctica , Clindrotheca closterium and Pyramimonas sp. The algal abundance of bottom 10cm sea ice varied between 14.6 and 1562.2 × 10^4 cells 1^-1 with an average of 639.0 × 10^4 cells 1^-1 , and the algal biomass ranged from 7.89 to 2093.5μg C 1^-1 with an average of 886.9μg C1^-1 , which were generally one order of magnitude higher than those of sub-bottom ice and two orders of magnitude higher than those of underlying surface water. The integrated algal abundance and biomass of lowermost 20 cm ice column were averagely 7.7 and 12.2 times as those of upper 20 m water column, respectively, suggesting that the ice algae might play an important role in maintaining the coastal marine ecosystem before the thawing of sea ice. Ice algae influenced the phytoplankton community of the underlying water column. However, the "seeding" of ice algae for phytoplankton bloom was negligible because of the low phytoplankton biomass within the underlying water column.
文摘We employ elevation data from the Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) to investigate surface changes across the Lena Delta and sea ice of the coastal Laptev Sea, Siberia during winters of 2003 through 2008. We compare ICESat GLAS-derived elevation changes on sea ice and the Bykovskaya and Sardakhskaya Channels with datum-corrected tide gauge height measurements from Danai, Sannikova and Tiksi stations. We find the coastal sea ice and large inland ice covered channels elevation changes are in phase with the tide-height changes on a same month-year and datum-controlled basis. Furthermore, we find elevation change on tundra drained lake basins to be +0.03 ± 0.02 m, on average. These findings indicate that ICESat GLAS is capable of detection of tide fluxes of ice covered coastal rivers, and with a small error range, it is suitable for investigations of active-layer and permafrost dynamics associated with seasonal freezing (heave) and thawing (subsidence) using repeat-location profiles.
文摘The range of the Greenland halibut Reinhardtius hippoglossoides(Walbaum,1792)includes vast areas in the northern parts of the Atlantic and Pacific oceans,as well as the seas of the Arctic Ocean.Despite its commercial importance and decades of study,many aspects of its life cycle and reproduction remain poorly understood.Here,we evaluate the size distribution of Greenland halibut in the catches of research surveys in the Barents,Kara,and Laptev seas and conduct micro-and macroscopic studies of their gonads in the Laptev Sea.The size of Greenland halibut individuals increases from west to east,which is associated with the settling of pelagic juveniles and the subsequent residency of growing individuals near their settling sites.To the greatest extent,this size imbalance is manifested in the areas most remote from spawning grounds,i.e.the Kara and Laptev seas.The process of maturation in large individuals of Greenland halibut in the Arctic seas is characterized by a state of inhibitionwaiting in the early stages of gametogenesis(previtellogenesis).The data obtained indicate that Greenland halibut in the North Atlantic and the Siberian Arctic have a continuous range.The continental slope of the Barents Sea is a spawning and maturing ground,while the northern parts of the Barents and Kara seas,as well as the continental slope of the Laptev Sea,are feeding grounds for juveniles.The results of this study might serve as a necessary basis for monitoring condition of halibut stocks as well as for reallocation of the total allowable catch between countries that exploited them in the Norwegian and Barents seas.