In recent years,manganese-based oxides as an advanced class of cathode materials for zinc-ion batteries(ZIBs)have attracted a great deal of attentions from numerous researchers.However,their slow reaction kinetics,lim...In recent years,manganese-based oxides as an advanced class of cathode materials for zinc-ion batteries(ZIBs)have attracted a great deal of attentions from numerous researchers.However,their slow reaction kinetics,limited active sites and poor electrical conductivity inevitably give rise to the severe performance degradation.To solve these problems,herein,we introduce abundant oxygen vacancies into the flower-likeδ-MnO_(2)nanostructure and effectively modulate the vacancy defects to reach the optimal level(δ-MnO_(2)-x-2.0).The smart design intrinsically tunes the electronic structure,guarantees ion chemisorption-desorption equilibrium and increases the electroactive sites,which not only effectively accelerates charge transfer rate during reaction processes,but also endows more redox reactions,as verified by first-principle calculations.These merits can help the fabricatedδ-MnO_(2)-x-2.0 cathode to present a large specific capacity of 551.8 mAh g^(-1) at 0.5 A g^(-1),high-rate capability of 262.2 mAh g^(-1) at 10 A g^(-1) and an excellent cycle lifespan(83%of capacity retention after 1500 cycles),which is far superior to those of the other metal compound cathodes.In addition,the charge/discharge mechanism of theδ-MnO_(2)-x-2.0 cathode has also been elaborated through ex situ techniques.This work opens up a new pathway for constructing the next-generation high-performance ZIBs cathode materials.展开更多
This paper is to study a maturity model of project management capability for a large aircraft main manufacturer using a capability maturity model and an organizational project management maturity model.First,we build ...This paper is to study a maturity model of project management capability for a large aircraft main manufacturer using a capability maturity model and an organizational project management maturity model.First,we build the project management capability maturity level,its features,key process areas and best practices to provide a clear goal and path for the development of project management capability.Secondly,we set a project management capability evaluation index system according to the project management processes and key process areas.Moreover,we use the fuzzy mathematical theory to evaluate the project management capability maturity level.Finally,the large aircraft main manufacturer can choose the best practices based on the evaluation of the maturity level so as to reach the purpose of improving project management capability of the main manufacturer gradually.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos. 52072196, 52002200, 52102106 and 52002199Major Basic Research Program of the Natural Science Foundation of Shandong Province under Grant No. ZR2020ZD09+2 种基金the Natural Science Foundation of Shandong Province under Grant No. ZR2020QE063the Innovation and Technology Program of Shandong Province under Grant No. 2020KJA004the Taishan Scholars Program of Shandong Province under Grant No. ts201511034
文摘In recent years,manganese-based oxides as an advanced class of cathode materials for zinc-ion batteries(ZIBs)have attracted a great deal of attentions from numerous researchers.However,their slow reaction kinetics,limited active sites and poor electrical conductivity inevitably give rise to the severe performance degradation.To solve these problems,herein,we introduce abundant oxygen vacancies into the flower-likeδ-MnO_(2)nanostructure and effectively modulate the vacancy defects to reach the optimal level(δ-MnO_(2)-x-2.0).The smart design intrinsically tunes the electronic structure,guarantees ion chemisorption-desorption equilibrium and increases the electroactive sites,which not only effectively accelerates charge transfer rate during reaction processes,but also endows more redox reactions,as verified by first-principle calculations.These merits can help the fabricatedδ-MnO_(2)-x-2.0 cathode to present a large specific capacity of 551.8 mAh g^(-1) at 0.5 A g^(-1),high-rate capability of 262.2 mAh g^(-1) at 10 A g^(-1) and an excellent cycle lifespan(83%of capacity retention after 1500 cycles),which is far superior to those of the other metal compound cathodes.In addition,the charge/discharge mechanism of theδ-MnO_(2)-x-2.0 cathode has also been elaborated through ex situ techniques.This work opens up a new pathway for constructing the next-generation high-performance ZIBs cathode materials.
文摘This paper is to study a maturity model of project management capability for a large aircraft main manufacturer using a capability maturity model and an organizational project management maturity model.First,we build the project management capability maturity level,its features,key process areas and best practices to provide a clear goal and path for the development of project management capability.Secondly,we set a project management capability evaluation index system according to the project management processes and key process areas.Moreover,we use the fuzzy mathematical theory to evaluate the project management capability maturity level.Finally,the large aircraft main manufacturer can choose the best practices based on the evaluation of the maturity level so as to reach the purpose of improving project management capability of the main manufacturer gradually.