期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Design of three-dimensional imaging lidar optical system for large field of view scanning
1
作者 李青岩 张雨 +2 位作者 闫诗雨 张斌 王春晖 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期284-289,共6页
Three-dimensional(3D)lidar has been widely used in various fields.The MEMS scanning system is one of its most important components,while the limitation of scanning angle is the main obstacle to improve the demerit for... Three-dimensional(3D)lidar has been widely used in various fields.The MEMS scanning system is one of its most important components,while the limitation of scanning angle is the main obstacle to improve the demerit for its application in various fields.In this paper,a folded large field of view scanning optical system is proposed.The structure and parameters of the system are determined by theoretical derivation of ray tracing.The optical design software Zemax is used to design the system.After optimization,the final structure performs well in collimation and beam expansion.The results show that the scan angle can be expanded from±5°to±26.5°,and finally the parallel light scanning is realized.The spot diagram at a distance of 100 mm from the exit surface shows that the maximum radius of the spot is 0.506 mm with a uniformly distributed spot.The maximum radius of the spot at 100 m is 19 cm,and the diffusion angle is less than 2 mrad.The energy concentration in the spot range is greater than 90%with a high system energy concentration,and the parallelism is good.This design overcomes the shortcoming of the small mechanical scanning angle of the MEMS lidar,and has good performance in collimation and beam expansion.It provides a design method for large-scale application of MEMS lidar. 展开更多
关键词 3D lidar MEMS scanning system large field of view scanning ZEMAX
下载PDF
Performance of the Large Field of View Airborne Infrared Scanner and its application potential in land surface temperature retrieval
2
作者 Chao WANG Zhiyuan LI +5 位作者 Xiong XU Xiangsui ZENG Jia LI Huan XIE Yanmin JIN Xiaohua TONG 《Frontiers of Earth Science》 SCIE CSCD 2023年第2期378-390,共13页
The Large Field of View Airborne Infrared Scanner is a newly developed multi-spectral instrument that collects images from the near-infrared to long-wave infrared channels.Its data can be used for land surface tempera... The Large Field of View Airborne Infrared Scanner is a newly developed multi-spectral instrument that collects images from the near-infrared to long-wave infrared channels.Its data can be used for land surface temperature(LST)retrieval and environmental monitoring.Before data application,quality assessment is an essential procedure for a new instrument.In this paper,based on the data collected by the scanner near the Yellow River in Henan Province,the geometric and radiometric qualities of the images are first evaluated.The absolute geolocation accuracy of the ten bands of the scanner is approximately 5.1 m.The ground sampling distance is found to be varied with the whisk angles of the scanner and the spatial resolution of the images.The band-to-band registration accuracy between band one and the other nine bands is approximately 0.25 m.The length and angle deformations of the ten bands are approximately 0.67%and 0.3°,respectively.The signal-to-noise ratio(SNR)and relative radiometric calibration accuracy of bands 4,9,and 10 are relatively better than those of the other bands.Secondly,the radiative transfer equation(RTE)method is used to retrieve the LST from the data of the scanner.Measurements of in situ samples are collected to evaluate the retrieved LST.Neglecting the samples with unreasonable retrieved LST,the bias and RMSE between in situ LST measured by CE312 radiometer and retrieved LST are−0.22 K and 0.94 K,and the bias and RMSE are 0.27 K and 1.59 K for the InfReC R500-D thermal imager,respectively.Overall,the images of the Large Field of View Airborne Infrared Scanner yield a relatively satisfactory accuracy for both LST retrieval and geometric and radiometric qualities. 展开更多
关键词 large field of view Airborne Infrared Scanner quality assessment thermal infrared remote sensing land surface temperature retrieval
原文传递
3D depth-coded photoacoustic microscopy with a large field of view for human skin imaging 被引量:4
3
作者 程中文 马海钢 +1 位作者 王志阳 杨思华 《Chinese Optics Letters》 SCIE EI CAS CSCD 2018年第8期58-61,共4页
Photoacoustic (PA) microscopy comes with high potential for human skin imaging, since it allows noninvasively high-resolution imaging of the natural hemoglobin at depths of several millimeters. Here, we developed a ... Photoacoustic (PA) microscopy comes with high potential for human skin imaging, since it allows noninvasively high-resolution imaging of the natural hemoglobin at depths of several millimeters. Here, we developed a PA microscopy to achieve high-resolution, high-contrast, and large field of view imaging of skin. A three-dimensional (3D) depth-coding technology was used to encode the depth information in PA images, which is very intuitive for identifying the depth of blood vessels in a two-dimensional image, and the vascular structure can be analyzed at different depths. Imaging results demonstrate that the 3D depth-coded PA microscopy should be translated from the bench to the bedside. 展开更多
关键词 PA depth-coded photoacoustic microscopy with a large field of view for human skin imaging
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部