期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
Plume-lithosphere interaction in the Comei Large Igneous Province: Evidence from two types of mafic dykes in Gyangze, south Tibet, China
1
作者 Ya-ying Wang Ling-sen Zeng +6 位作者 Li-e Gao Li-long Yan Ling-hao Zhao Jia-hao Gao Ying-long Di Guang-xu Li Yi-hong Tian 《China Geology》 CAS CSCD 2024年第1期80-90,共11页
Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137.... Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137.7±1.3 Ma zircon age and T0907 dyke with 142±1.4 Ma zircon age reported by Wang YY et al.(2016),indicating coeval formation time.Taking all the four diabase dykes into consideration,two different types,OIB-type and weak enriched-type,can be summarized.The“OIB-type”samples,including T1193-A and T0907 dykes,show OIB-like geochemical features and have initial Sr-Nd isotopic values similar with most mafic products in Comei Large Igneous Provinces(LIP),suggesting that they represent melts directly generated from the Kerguelen mantle plume.The“weak enriched-type”samples,including T1194-A and T0902 dykes,have REEs and trace element patterns showing withinplate affinity but have obvious Nb-Ta-Ti negative anomalies.They show uniform lowerεNd(t)values(−6‒−2)and higher 87Sr/86Sr(t)values(0.706‒0.709)independent of their MgO variation,indicating one enriched mantle source.Considering their closely spatial and temporal relationship with the widespread Comei LIP magmatic products in Tethyan Himalaya,these“weak enriched-type”samples are consistent with mixing of melts from mantle plume and the above ancient Tethyan Himalaya subcontinental lithospheric mantle(SCLM)in different proportions.These weak enriched mafic rocks in Comei LIP form one special rock group and most likely suggest large scale hot mantle plume-continental lithosphere interaction.This process may lead to strong modification of the Tethyan Himalaya lithosphere in the Early Cretaceous. 展开更多
关键词 OIB type diabase Comei Large Igneous Province Weakly enriched diabase Plume-lithosphere interaction Nb-Ta-Ti negative anomaly Kerguelen plume Geological survey engineering Tibet Plateau
下载PDF
Petrogenesis of Oligocene volcanic rocks of the Lake Tana area,Ethiopian large Igneous Province
2
作者 Ayenachew Alemayhou Desta Asfawossen Asrat Minyahl Teferi Desta 《Acta Geochimica》 EI CAS CSCD 2023年第6期1104-1123,共20页
The Lake Tana area is located within a complex volcano-tectonic basin on the northwestern Ethiopian plateau.The basin is underlain by a thick succession of Oligocene transitional basalts and sub-alkaline rhyolites ove... The Lake Tana area is located within a complex volcano-tectonic basin on the northwestern Ethiopian plateau.The basin is underlain by a thick succession of Oligocene transitional basalts and sub-alkaline rhyolites overlain in places,particularly south of the lake,by Quaternary alkaline to mildly transitional basalts,and dotted with Oligo-Miocene trachyte domes and plugs.This paper presents the results of integrated field,petrographic,and major and trace element geochemical studies of the Lake Tana area volcanic rocks,with particular emphasis on the Oligocene basalts and rhyolites.The studies reveal a clear petrogenetic link between the Oligocene basalts and rhyolites.The Oligocene basalts are:(1)plagioclase,olivine,and/or pyroxene phyric;(2)show an overall decreasing trend in MgO,Fe_(2)O_(3),and CaO with silica;(3)have relatively low Mg#,Ni and Cr contents and high Nb/La and Nb/Yb ratios;and(4)show LREE enriched and generally flat HREE patterns.All these imply the origin of the Oligocene basalts by shallow-level fractional crystallization of an enriched magma sourced at the asthenospheric mantle.The Oligocene rhyolites:(1)are enriched in incompatible while depleted in compatible trace elements,P and Ti;(2)show a strong negative Eu anomaly;(3)contain appreciable amounts of plagioclase,apatite,and Fe-Ti oxides;and(4)show clear geochemical similarity with well-constrained rhyolites from the Large Igneous Province(LIP)of the northwestern Ethiopian plateau.Low-pressure fractional crystallization of mantle-derived basaltic magma in crustal magma chambers explains the origin of these rhyolites.Our study further shows that the Oligocene basalts and rhyolites are co-genetic and the felsic rocks of the Lake Tana area are related differentiates of the flood basalt volcanism in the northwestern Ethiopian plateau. 展开更多
关键词 Large igneous province Oligocene basalt Oligocene rhyolite Fractional crystallization Lake Tana
下载PDF
Textural and compositional zoning in plagioclase phenocrysts:implications for magma chamber processes in the Emeishan large Igneous Province,SW China
3
作者 Qi Chen Song-Yue Yu +2 位作者 Lie-Meng Chen Sheng-Hua Zhou Jian Kang 《Acta Geochimica》 EI CAS CSCD 2023年第3期453-470,共18页
Textural and compositional zoning within plagioclase phenocrysts records the magma chamber processes,such as magma differentiation,magma recharge and mixing,and crustal contamination.The plagioclase phenocrysts in the... Textural and compositional zoning within plagioclase phenocrysts records the magma chamber processes,such as magma differentiation,magma recharge and mixing,and crustal contamination.The plagioclase phenocrysts in the Daqiao and Qiaojia plagioclase-phyric basalts from the Emeishan Large Igneous Province(LIP)show complex textural and compositional zoning patterns,e.g.,normal,reverse,oscillatory,and patchy zoning patterns.Most plagioclase phenocrysts exhibit a core–rim normal zoning pattern(Pl-A)with euhedral high-An cores(An=76–78%,in mole fraction)and low-An rims(An=68–72%),indicative of the crystal regrowth processes caused by recharge of relatively evolved magmas after the formation of high-An cores.Some phenocrysts have a core–rim reverse zoning pattern(Pl-B)with irregular ovaloid cores,characterized by extremely low An(60–61 mol%)and Ba(84–88 ppm)contents and extremely high87Sr/86Sr ratios(0.7120–0.7130).The rims of the Pl-B have relatively high An(69–72%),Ba(~160 ppm)contents,and low87Sr/86Sri(~0.7056).These Pl-B plagioclase phenocrysts preserve the information about the interaction between the crustal xenocrysts and the transporting magmas.Some plagioclase phenocrysts show a core–mantle–rim oscillatory zoning pattern(Pl-C)with multiple oscillations of An(70–80%),Ba(88–147ppm)from core to rim,revealing replenishment and mixing of multiple batches of basaltic melts with diverse compositions.87Sr/86Sr ratios of the Pl-C do not vary significantly(0.7050–0.7054).A small portion of phenocrysts has patchy patterns in the cores(Pl-D),where the low-An patches(72–75%)in form of elliptical or irregular elongated shapes were enclosed by the high-An domains(80–87%).These features can be attributed to crystal dissolution and regrowth processes during the reaction between earlyformed low-Cumulates and recharged hot primitive melts.The cores,mantles,and rims of different types of plagioclase phenocrysts(except the core of Pl-B)commonly display nearly constant Sr isotopic compositions,implying insignificant wall-rock assimilation at shallow-level magma reservoir(s)during the growth of these plagioclase phenocrysts.In conclusion,the massive crystallization of plagioclase in the late stage was an important controlling factor for the formation of iron-rich basalts in the Emeishan LIP. 展开更多
关键词 Emeishan large Igneous Province Plagioclase-phyric basalt Compositional zoning Plagioclase phenocryst Magma replenishment
下载PDF
Chemostratigraphy of Flood Basalts in the Garze-Litang Region and Zongza Block: Implications for Western Extension of the Emeishan Large Igneous Province, SW China 被引量:18
4
作者 XIAOLong XUYigang +2 位作者 XUJifeng HEBin PirajnoFRANCO 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第1期61-67,共7页
The Late Permian Emeishan Large Igneous Province (ELIP) is commonly regarded as being located in the western part of the Yangtze craton, SW China, with an asymmetrical shape and a small area. This area, however, is ju... The Late Permian Emeishan Large Igneous Province (ELIP) is commonly regarded as being located in the western part of the Yangtze craton, SW China, with an asymmetrical shape and a small area. This area, however, is just a maximum estimation because some parts of the ELIP were not recognized or dismembered and destroyed during the Triassic to Cenozoic tectonism. In this paper, the chemostratigraphical data of the Zongza block, the Garze-Litang belt and the Songpan-Garze block suggest that the Late Permian basalts in these areas have remarkable similarities to the ELIP basalts in petrography and geochemistry. Flood basalts in the Sanjiangkou area are composed of the lower part of the low-Ti (LT) tholeiite and the upper part of the high-Ti (HT) tholeiite, which is the same as the flood basalts on the western margin of the Yangtze craton. Flood basalts in the Zongza and Songpan-Garze areas, which are far from the Yangtze craton, consist of HT tholeiite only. This is the same as the flood basalts within the Yangtze craton. Therefore we argue that these contemporary basalts all originated from the Emeishan mantle plume, and the ELIP could have a significant westward extension with an outcropped area of over 500,000 km2. This new scenario shows that the LT tholeiite occurs on the western margin of the Yangtze craton, while the HT tholeiite overlying the LT basalts occupies the whole area of the ELIP. 展开更多
关键词 Emeishan large igneous province flood basalts CHEMOSTRATIGRAPHY Yangtze craton Garze-Litang Zongza block
下载PDF
Eruption of the Continental Flood Basalts at -259 Ma in the Emeishan Large Igneous Province, SW China: Evidence from Laser Microprobe ^(40)Ar/^(39)Ar Dating 被引量:16
5
作者 HOU Zengqian CHEN Wen LU Jiren 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第4期514-521,共8页
A suite of continental flood basalts sampled over a vast exposure and stratigraphic thickness in the Emeishan large igneous province (LIP), SW China was investigated for laser microprobe ^40Ar/^39Ar dating. There ar... A suite of continental flood basalts sampled over a vast exposure and stratigraphic thickness in the Emeishan large igneous province (LIP), SW China was investigated for laser microprobe ^40Ar/^39Ar dating. There are two ^40Ar/^39Ar age groups for these basalts, corresponding to 259-246 Ma and 177-137 Ma, respectively. A well-defined isochron gives an eruption age of huge quantities of mafic magmas at 258.9±3.4 Ma, which is identical to previous dating and paleontological data. Much younger ^40Ar/^39Ar ages for some basalts with Iow-greenschist metamorphic facies probably recorded a late thermo-tectonic event caused by collision between the Yangtze and Qiangtang continental blocks during the Mesozoic, which resulted in the reset of argon isotope system. The ^40Ar/^39Ar age data, we present here, combined with previous dating and paleontological data, suggest relatively short duration (about 3 Ma) of mafic volcanism, which have important implication on mantle plume genesis of the Emeishan continental flood basalts in the LIP. 展开更多
关键词 laser microprobe ^40Ar/^39Ar age continental flood basalts EMEISHAN large igneous province
下载PDF
The Emeishan large igneous province:A synthesis 被引量:60
6
作者 J.Gregory Shellnutt 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第3期369-394,共26页
The late Permian Emeishan large igneous province (EL1P) covers -0.3× 10-6 kmL of the western margin of the Yangtze Block and Tibetan Plateau with displaced, correlative units in northern Vietnam (Song Da zone... The late Permian Emeishan large igneous province (EL1P) covers -0.3× 10-6 kmL of the western margin of the Yangtze Block and Tibetan Plateau with displaced, correlative units in northern Vietnam (Song Da zone). The ELIP is of particular interest because it contains numerous world-class base metal deposits and is contemporaneous with the late Capitanian (-260 Ma) mass extinction. The flood basalts are the signature feature of the ELIP but there are also ultramafic and silicic volcanic rocks and layered mafic- ultramafic and silicic plutonic rocks exposed. The EL1P is divided into three nearly concentric zones (i.e. inner, middle and outer) which correspond to progressively thicker crust from the inner to the outer zone. The eruptive age of the ELIP is constrained by geological, paleomagnetic and geochronological evidence to an interval of 〈3 Ma. The presence of picritic rocks and thick piles of flood basalts testifies to high temperature thermal regime however there is uncertainty as to whether these magmas were derived from the subcontinental lithospheric mantle or sub-lithospheric mantle (i.e. asthenosphere or mantle plume) sources or both. The range of Sr (Isr ≈ 0.7040-0.7132), Nd (ENd(t) ≈ -14 tO +8), Pb (206-pb/204-pb1 ≈ 17.9-20.6) and Os (Yos ≈ -5 to +11) isotope values of the ultramafic and mafic rocks does not permit a conclusive answer to ultimate source origin of the primitive rocks but it is clear that some rocks were affected by crustal contamination and the presence of near-depleted isotope compo- sitions suggests that there is a sub-lithospheric mantle component in the system. The silicic rocks are derived by basaltic magmas/rocks through fractional crystallization or partial melting, crustal melting or by interactions between mafic and crustal melts. The formation of the Fe-Ti-V oxide-ore deposits is probably due to a combination of fractional crystallization of Ti-rich basalt and fluxing of C02-rich fluids whereas the Ni-Cu-(PGE) deposits are related to crystallization and crustal contamination of mafic or ultramafic magmas with subsequent segregation of a sulphide-rich portion. The ELIP is considered to be a mantle plume-derived LIP however the primary evidence for such a model is less convincing (e.g. uplift and geochemistry) and is far more complicated than previously suggested but is likely to be derived from a relatively short-lived, plume-like upwelling of mantle-derived magmas. The emplacement of the ELIP may have adversely affected the short-term environmental conditions and contributed to the decline in biota durin~ the late Caoitanian. 展开更多
关键词 Late Permian Mantle plume Large igneous province Flood basalts Mineral deposits Uplift and doming
下载PDF
Baddeleyite and zircon U-Pb ages of the ultramafic rocks in Chigu Tso area,Southeastern Tibet and their constraints on the timing of Comei Large Igneous Province 被引量:6
7
作者 Ya-ying Wang Ling-sen Zeng +8 位作者 Ling-hao Zhao Li-e Gao Jia-hao Gao Zhao-ping Hu Hai-tao Wang Guang-xu Li Ying-long Di Yu Shen Qian Xu 《China Geology》 2020年第2期262-268,共7页
A suite of ultramafic and mafic rocks developed in the Chigu Tso area,eastern Tethyan Himalaya.Baddeleyite and zircon U-Pb ages acquired by SIMS and LA-ICP-MS from olivine pyroxenite rocks in the Chigu Tso area are 13... A suite of ultramafic and mafic rocks developed in the Chigu Tso area,eastern Tethyan Himalaya.Baddeleyite and zircon U-Pb ages acquired by SIMS and LA-ICP-MS from olivine pyroxenite rocks in the Chigu Tso area are 138.9±3.0 Ma and 139.0±1.9 Ma,respectively.These two Early Cretaceous ages are similar with the ages of the more abundant mafic rocks in the eastern Tethyan Himalaya,indicating that this suite of ultramafic and mafic rocks in the Chigu Tso area should be included in the outcrop area of the Comei Large Igneous Province(LIP).These ultramafic rocks provide significant evidence that the involvement of mantle plume/hot spot activities in the formation of the Comei LIP.Baddeleyite U-Pb dating by SIMS is one reliable and convenient method to constrain the formation time of ultramafic rocks.The dating results of baddeleyite and zircon from the olivine pyroxenite samples in this paper are consistent with each other within analytical uncertainties,suggesting that baddeleyite and zircon were both formed during the same magmatic process.The consistency of baddeleyite U-Pb ages in the Chigu Tso area with zircon U-Pb ages for a large number of Early Cretaceous mafic rocks in the eastern Tethyan Himalaya further support that zircon grains from such mafic rocks yielding Early Cretaceous ages are also magmatic in origin. 展开更多
关键词 U-Pb dating BADDELEYITE ZIRCON Ultramafic rock Comei Large Igneous Province Kerguelen plume Tethyan Himalaya Geological survey engineering TIBET China
下载PDF
Crust-derived felsic magmatism in the Emeishan large igneous Province:New evidence from zircon U-Pb-Hf-O isotope from the Yangtze Block,China 被引量:3
8
作者 Hao Zou Cheng-Hui Hu +7 位作者 M.Santosh Hai-Feng Chen Chang-Cheng Huang Xin-Wei Chen Hong-Kui Li Xin Jin Li-Ming Yu Min Li 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第3期139-155,共17页
Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province(ELIP),southwestern China.Most of the granitic ro... Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province(ELIP),southwestern China.Most of the granitic rocks in the ELIP were derived by differentiation of basaltic magmas with a mantle connection,and crustal magmas have rarely been studied.Here we investigate a suite of mafic dykes and Ⅰ-type granites that yield zircon U-Pb emplacement ages of 259.9±1.2 Ma and 259.3±1.3 Ma,respectively.The εHf(t)values of zircon from the DZ mafic dyke are–0.3 to 9.4,and their corresponding TDM1 values are in the range of 919–523 Ma.The εHf(t)values of zircon from the DSC Ⅰ-type granite are between–1 and 3,with TDM1 values showing a range of 938–782 Ma.We also present zircon O isotope data on crust-derived felsic intrusions from the ELIP for the first time.The δ18O values of zircon from the DSC Ⅰ-type granite ranges from 4.87‰to 7.5‰.The field,petrologic,geochemical and isotopic data from our study lead to the following salient findings.(i)The geochronological study of mafic and felsic intrusive rocks in the ELIP shows that the ages of mafic and felsic magmatism are similar.(ii)The DZ mafic dyke and high-Ti basalts have the same source,i.e.,the Emeishan mantle plume.The mafic dyke formed from magmas sourced at the transitional depth between from garnet-lherzolite and spinel-lherzolite,with low degree partial melting(<10%).(iii)The Hf-O isotope data suggest that the DSC Ⅰ-type granite was formed by partial melting of Neoproterozoic juvenile crust and was contaminated by minor volumes of chemically weathered ancient crustal material.(iv)The heat source leading to the formation of the crust-derived felsic rocks in of the ELIP is considered to be mafic–ultramafic magmas generated by a mantle plume,which partially melted the overlying crust,generating the felsic magma. 展开更多
关键词 Emeishan Large Igneous Province Mafic and felsic magmatism Zircon U-Pb-Hf-O isotopes Crustal partial melting Mantle plume
下载PDF
Petrogenesis and Metallogenesis of the Mazaertag Layered Intrusion in the Tarim Large Igneous Province,NW China 被引量:2
9
作者 CAO Jun WANG Qimeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第5期1653-1679,共27页
The Mazaertag layered intrusion is located in the northwestern part of the Tarim large igneous province where several early Permian layered mafic-ultramafic intrusions host important Fe-Ti oxide deposits. The intrusio... The Mazaertag layered intrusion is located in the northwestern part of the Tarim large igneous province where several early Permian layered mafic-ultramafic intrusions host important Fe-Ti oxide deposits. The intrusion covers an area of -0.13 km-2 and has a vertical stratigraphic thickness of at least300 m. It consists chiefly of olivine clinopyroxenite, and is cut through by the nearby mafic-ultramafic dykes. In this paper, we report new mineral chemistry data and whole-rock chemical and isotopic compositions for the Mazaertag intrusion along with whole-rock isotopic compositions for the nearby mafic dykes. The averaged compositions of cumulus olivine, clinopyroxene and intercumulus plagioclase within individual samples range from Fo71-73,Mg^# = 76 to 79 and An65-75 but they do not define sustained reversals. The observed mineral compositions are consistent with the differentiation of a single batch of magma in a closed system. Rocks of the Mazaertag intrusion are characterized by enrichment in light REE relative to heavy REE, positive Nb and Ta anomalies and a small range of age-corrected εNd(t)(-0.1 to +0.9) and initial ^87Sr/^86Sr values(0.7044 to 0.7068). The slightly lower εNdt), initial ^206Pb/^204Pb and higher initial ^87Sr/^86Sr values of the intrusion compared to those of the least contaminated dykes[εNdt) =+2.8 to +3.4;^206Pb/^204Pb)i = 18.516-18.521;(^87Sr/^86Sr)i = 0.7038-0.7041] imply that the Mazaertag magma was subjected to small to modest degrees of contamination by the upper crust. The Sr-Nd isotopic compositions of the least contaminated dykes are consistent with derivation from a FOZO-like mantle source. The parental magma of the Mazaertag intrusion, estimated from clinopyroxene compositions using mineral-melt partition coefficients, has trace element compositions similar to some of the most primitive mafic dykes in the same area. This suggests that the Mazaertag intrusion and mafic dykes shared a similar mantle source. Therefore, the parental magma of the Mazaertag intrusion was interpreted to have originated from a mantle plume. Based on the Cr2O3 contents in titanomagnetite and less-evolved characteristics of the Mazaertag intrusion compared to the Wajilitag Fe-Ti oxide deposit in Bachu, it is speculated that there might not be a potential to find economic Fe-Ti oxide mineralization in the intrusion. 展开更多
关键词 CLINOPYROXENE Fe-Ti oxide layered intrusion Mazaertag Tarim large igneous province
下载PDF
Contrasting oxidation states of low-Ti and high-Ti magmas control Ni-Cu sulfide and Fe-Ti oxide mineralization in Emeishan Large Igneous Province 被引量:2
10
作者 Yonghua Cao Christina Yan Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第6期41-58,共18页
Magmatic Ni-Cu-(PGE) sulfide and Fe-Ti oxide deposits in plume-related large igneous provinces(LIPs)are commonly related to low-Ti and high-Ti series magmas, respectively, but the major factors that control such a rel... Magmatic Ni-Cu-(PGE) sulfide and Fe-Ti oxide deposits in plume-related large igneous provinces(LIPs)are commonly related to low-Ti and high-Ti series magmas, respectively, but the major factors that control such a relationship of metallogenic types and magma compositions are unclear. Magma fOcontrols sulfur status and relative timing of Fe-Ti oxide saturation in mafic magmas, which may help clarify this issue. Taking the Emeishan LIP as a case, we calculated the magma fOof the high-Ti and low-Ti picrites based on the olivine-spinel oxygen barometer, and the partitioning of V in olivine. The obtained fOof the high-Ti series magma(FMQ + 1.1 to FMQ + 2.6) is higher than that of the low-Ti series magma(FMQ-0.5to FMQ + 0.5). The magma fOof the high-Ti and low-Ti picrites containing Fo > 90 olivine reveals that the mantle source of the high-Ti series is likely more oxidized than that of the low-Ti series. The results using the ’lambda REE’ approach show that the high-Ti series may have been derived from relatively oxidized mantle with garnet pyroxenite component. The S contents at sulfide saturation(SCSS) of the two series magmas were calculated based on liquid compositions obtained from the alpha Melts modeling, and the results show that the low-Ti series magma could easily attain the sulfide saturation as it has low fOwith S being dominantly as S. In contrast, the oxidized high-Ti series magma is difficult to attain the sulfide saturation, but could crystallize Fe-Ti oxides at magma MgO content of ~7.0 wt.%. Thus, contrasting magma fOof low-Ti and high-Ti series in plume-related LIPs may play an important role in producing two different styles of metallogeny. 展开更多
关键词 Emeishan large igneous province Mantle plume High-Ti and low-Ti series magma Magma oxygen fugacity Magmatic Fe-Ti oxide deposits Magmatic Ni-Cu-(PGE)deposits
下载PDF
Periodicities in the emplacement of large igneous provinces through the Phanerozoic:Relations to ocean chemistry and marine biodiversity evolution 被引量:8
11
作者 Andreas Prokoph Hafida E1 Bilali Richard Ernst 《Geoscience Frontiers》 SCIE CAS CSCD 2013年第3期263-276,共14页
Large igneous provinces (LIPs) are considered a relevant cause for mass extinctions of marine life throughout Earth's history. Their flood basalts and associated intrusions can cause significant release of SO4 and ... Large igneous provinces (LIPs) are considered a relevant cause for mass extinctions of marine life throughout Earth's history. Their flood basalts and associated intrusions can cause significant release of SO4 and CO2 and consequently, cause major environmental disruptions. Here, we reconstruct the long-term periodic pattern of LIP emplacement and its impact on ocean chemistry and biodiversity from δ34Ssulfate of the last 520 Ma under particular consideration of the preservation limits of LIP records. A combination of cross-wavelet and other time-series analysis methods has been applied to quantify a potential chain of linkage between LIP emplacement periodicity, geochemical changes and the Phanerozoic marine genera record. We suggest a mantle plume cyclicity represented by LIP volumes (V) of V= (350-770) × 103km3sin(27πt/ 170 Ma)+ (300-650)× 103 km3 sin(2πt/64.5 Ma + 2.3) for t= time in Ma. A shift from the 64.5 Ma to a weaker -28-35 Ma LIP cyclicity during the Jurassic contributes together with probably independent changes in the marine sulfur cycle to less ocean anoxia, and a general stabilization of ocean chemistry and increasing marine biodiversity throughout the last -135 Ma. The LIP cycle pattern is coherent with marine biodiversity fluctuations corresponding to a reduction of marine biodiversity of -120 genera/Ma at 600 x 103 km3 LIP eruption volume. The 62-65 Ma LIP cycle pattern as well as excursion in -34Ssulfate and marine genera reduction suggest a not-vet identified found LIP event at - 440-450 Ma. 展开更多
关键词 Large igneous provinces Wavelet transform Sulfur isotope Mantle plume Marine biodiversity Periodicity
下载PDF
Rhyolites in continental mafic Large Igneous Provinces: Petrology,geochemistry and petrogenesis 被引量:1
12
作者 Mahesh Halder Debajyoti Paul Sarajit Sensarma 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期53-80,共28页
We present a detailed review of the petrological and geochemical aspects of rhyolite and associated silicic volcanic rocks(up to 20 vol%of all rocks)reported to date from twelve well known Phanerozoic continental mafi... We present a detailed review of the petrological and geochemical aspects of rhyolite and associated silicic volcanic rocks(up to 20 vol%of all rocks)reported to date from twelve well known Phanerozoic continental mafic Large Igneous Provinces(LIPs).These typically spread over<104 km^2(rarely 105 km^2 for Parana-Etendeka)area and comprise<10~4 km^3 of extrusive silicic rocks,erupted either during or after the main basaltic eruption within<5 Myr,with some eruption(s)continuing for≤30 Myr.These rhyolites and associated silicic volcanic rocks(60-81 wt.%of SiO2)are mostly metaluminous to peraluminous and are formed via(ⅰ)fractional crystallization of parental mafic magma with negligible crustal contamination,and(ⅱ)melting of continental crust or assimilation and fractional crystallization(AFC)of mafic magma with significant crustal contribution.Rhyolites formed by extensive fractional crystallization are characterized by the presence of clinopyroxene phenocrysts,exhibit steep negative slopes in bivariate major oxides plots and weak to no Nb-Ta anomaly;these typically have temperature>900℃.Rhyolites formed by significant crustal contribution are characterized by strong negative Nb-Ta anomalies,absence of clinopyroxene phenocrysts,and are likely to have a magma temperature<900℃.Geochemical signatures suggest rhyolite melt generation in the plagioclase stability field with a minor fraction originating from lower crustal depths.A large part of the compositional variability in rhyolites,particularly the SrNd-Pb-O isotope ratios,suggests a significant role of continental crust(upper crustal melting or AFC)in the evolution of these silicic rocks in the continental mafic LIPs. 展开更多
关键词 Large Igneous Province Silicic rock RHYOLITE GEOCHEMISTRY PETROGENESIS AFC
下载PDF
Newly Discovered Fluvial-Lacustrine Sediments in the Western Yangtze Block and their Geological Significance for the Emeishan Large Igneous Province 被引量:2
13
作者 MABI Awei ZHANG Mingchun +3 位作者 YANG Zhengxi LI Yanlong WEN Dengkui LIU Xuyang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期741-742,共2页
Objective The Emeishan large igneous province (ELIP) in SW China is the only one large igneous province in China recognized by international geologists. Previous studies of ELIP over past two decades indicate that ... Objective The Emeishan large igneous province (ELIP) in SW China is the only one large igneous province in China recognized by international geologists. Previous studies of ELIP over past two decades indicate that the ELIP age, duration, scale and generation mechanism are still controversial. Among those scientific topics, some scholars suggest that ELIP is an example of up-doming prior to LIP formation, which was evidenced by: (1) The thickness of the Yangxin Formation (P^v) limestone unit, which lies directly beneath ELIP, reduces from the center of erosional area to the outer edge. (2) Paleo-karst surfaces are present. (3) The clastic rocks of alluvial fan deposits, from the eroded materials in the maximum uplifted area, developed surrounding the inner zone. However, other scholars urge that those so-called "alluvial fan" deposits are "hydromagmatic deposits", erupted or emplaced at or near sea level, and conclude that there was no pre-emptive uplift in ELIP. In order to constrain the above-mentioned scientific issue, we conducted detailed field geological investigations and systematically measured geological sections to provide new evidence by using sedimentary data. 展开更多
关键词 Newly Discovered Fluvial-Lacustrine Sediments in the Western Yangtze Block and their Geological Significance for the Emeishan Large Igneous Province
下载PDF
Alkali feldspar syenites with shoshonitic affinities from Chhotaudepur area: Implication for mantle metasomatism in the Deccan large igneous province 被引量:1
14
作者 K.R.Hari N.V.Chalapathi Rao +1 位作者 Vikas Swarnkar Guiting Hou 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第2期261-276,共16页
Two petrologically distinct alkali feldspar syenite bodies (AFS-1 and AFS-2) from Chhotaudepur area, Deccan Large Igneous Province are reported in the present work. AFS-1 is characterized by hypidio-morphic texture ... Two petrologically distinct alkali feldspar syenite bodies (AFS-1 and AFS-2) from Chhotaudepur area, Deccan Large Igneous Province are reported in the present work. AFS-1 is characterized by hypidio-morphic texture and consists of feldspar (Or55Ab43 to Or25Ab71), ferro-pargasite/ferro-pargasite horn-blende, hastingsite, pyroxene (Wo47, En5, Fs46), magnetite and biotite. AFS-2 exhibits panidiomorphic texture with euhedral pyroxene (Wo47-50, En22-39, Fs12e31) set in a groundmass matrix of alkali feldspar (Or99Ab0.77 to Or1.33Ab98), titanite and magnetite. In comparison to AFS-1, higher elemental concentra-tions of Ba, Sr and PREE are observed in AFS-2. The average peralkaline index of the alkali feldspar syenites is w1 indicating their alkaline nature. Variation discrimination diagrams involving major and trace elements and their ratios demonstrate that these alkali feldspar syenites have a shoshonite affinity but emplaced in a within-plate and rifting environment. No evidence of crustal contamination is perceptible in the multi-element primitive mantle normalized diagram as well as in terms of trace elemental ratios. The enrichment of incompatible elements in the alkali feldspar syenites suggests the involvement of mantle metasomatism in their genesis. 展开更多
关键词 Alkali feldspar syenite Deccan large igneous province Mineralogy Geochemistry Shoshonite Mantle metasomatism
下载PDF
Mantle plume,large igneous province and continental breakup——Additionally discussing the Cenozoic and Mesozoic mantle plume problems in East China
15
作者 李凯明 汪洋 +2 位作者 赵建华 赵海玲 狄永军 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第3期330-339,共10页
Based on the former workers' study results such as numerical simulation of fluid mechanics, seismic tomography of the whole earth and igneous rocks, the basie characteristics of mantle plumes are summarized in det... Based on the former workers' study results such as numerical simulation of fluid mechanics, seismic tomography of the whole earth and igneous rocks, the basie characteristics of mantle plumes are summarized in detail, namely the mantle plume, from the D" layer near the core-mantle boundary (CMB) of 2900 km deep, is characterized by the shape of large head and thin narrow conduit, by the physical property of high temperature and low viscosity. The LIP (large igneous province) is the best exhibition when the mantle plume ascends to the surface. According to the basie characteristics of the mantle plumes and the LIP, as well as the temporal-spatial relationships between the mantle plume and Continental breakup, the detailed research on petrology, geochemistry, temporal-spatial distribution, tectonic background of the Cenozoic-Mesozoic igneous rocks and gravity anomaly distribution in East China has been done. As a result, the Mesozoic igneous rocks in Southeast China should not be regarded as an example of typical LIP related to mantle plumes, for their related characteristics are not consistent with those of the typical LIPs related to mantle plumes. The Cenozoic igneous rocks in Northeast China have no the typical characteristics of mantle plumes and hotspots, so the Cenozoic volcanism in Northeast China might have no the direct relationships with the activity of mantle plumes. 展开更多
关键词 mantle plume large igneous province Continental breakup continental flood basalt East China
下载PDF
Minto Large Igneous Province: A 2.00 Ga Mafic Magmatic Event in the Eastern Superior Craton Based on U-Pb Baddeleyite Geochronology and Paleomagnetism
16
作者 Michael A.HAMILTON Jean GOUTIER Kenneth L.BUCHAN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期69-70,共2页
A precise U-Pb baddeleyite age of 1999±2 Ma has been obtained for the NNW trending Lac Shpogan dyke swarm of the James Bay area of the eastern Superior craton.Previously the age of the swarm was only
关键词 Pb A 2.00 Ga Mafic Magmatic Event in the Eastern Superior Craton Based on U-Pb Baddeleyite Geochronology and Paleomagnetism Minto Large Igneous Province Bay GA
下载PDF
Mafic, Ultramafic and Carbonatitic Dykes in the Southern Siberian Craton with Age of ca 1 Ga: Remnants of a New Large Igneous Province?
17
作者 Elena I.DEMONTEROVA Alexei V.IVANOV Valentina B.SAVELYEVA 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期9-,共1页
Virtual absence of igneous complexes with ages between1.8 Ga and 0.8 Ga in southern part of the Siberian Craton allowed to Galdkochub et al.(2010)to formulate a hypothesis of long magmatic quiescence.Most reliable
关键词 area Ultramafic and Carbonatitic Dykes in the Southern Siberian Craton with Age of ca 1 Ga MAFIC Remnants of a New Large Igneous Province
下载PDF
Large Igneous Provinces, Their Giant Mafic Dyke Swarms, and Links to Metallogeny
18
作者 Simon M.JOWITT Richard E.ERNST 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期193-194,共2页
Giant mafic dyke swarms are a key component of the feeder system of Large Igneous Provinces(LIPs),large volume(>0.1 Mkm;;frequently above>1 M km;),mainly mafic(-ultramafic)magmatic events of intraplate aff... Giant mafic dyke swarms are a key component of the feeder system of Large Igneous Provinces(LIPs),large volume(>0.1 Mkm;;frequently above>1 M km;),mainly mafic(-ultramafic)magmatic events of intraplate affinity. 展开更多
关键词 Their Giant Mafic Dyke Swarms and Links to Metallogeny Large Igneous Provinces
下载PDF
SHRIMP Zircon U-Pb Age of the Piqiang Layered Intrusion in the Tarim Large Igneous Province and Subducted Slab-Plume Interaction in Its Petrogenesis
19
作者 CAO Jun 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第4期1651-1652,共2页
Objective During the Permian, at least four mafic continental large igneous provinces (LIPs) were tbrmed in eastern Asia, i.e., the Siberian traps (-251 Ma), Emeishan LIP (-260 Ma), Tarim LIP (-290-270 Ma) an... Objective During the Permian, at least four mafic continental large igneous provinces (LIPs) were tbrmed in eastern Asia, i.e., the Siberian traps (-251 Ma), Emeishan LIP (-260 Ma), Tarim LIP (-290-270 Ma) and Panjal traps (-290 Ma) (Shellnutt et al., 2015). The Emeishan and Tarim LIPs in China are both known for the presence of several magmatic Fe-Ti-V oxide deposits hosted in layered mafic- ultramafic intrusions. The origin of such magmatic Fe-Ti- V oxide deposits is enigmatic. One of the long-lasting debates is the mechanism by which large amounts of Fe-Ti oxides accumulated in the layered intrusions. Regardless of mechanism, there is still considerable debate regarding the mantle source compositions of the Fe-Ti-V oxide ore- bearing intrusions, in the Tarim LIP, a giant Fe-Ti-V oxide deposit is hosted by the Piqiang layered intrusion at the northern margin of the Tarim block. This intrusion consists mainly of gabbro and minor plagioclase-bearing clinopyroxenite and anorthosite (Fig. l a). For this study we present new SHRIMP zircon U-Pb age and whole-rock geochemical data for the Piqiang layered gabbroic intrusion to evaluate the nature of its possible source compositions, which in turn aids in understanding the formation of the giant Fe-Ti-V oxide deposit in the plume- related LIPs. 展开更多
关键词 SHRIMP Zircon U-Pb Age of the Piqiang Layered Intrusion in the Tarim Large Igneous Province and Subducted Slab-Plume Interaction In TA PB
下载PDF
Neoarchaean-Palaeoproterozoic Mafic Dyke Swarms from the Singhbhum Granite Complex,Singhbhum Craton,Eastern India:Implications for Identification of Large Igneous Provinces and Their Possible Continuation on Other Formerly Adjacent Crustal Blocks
20
作者 Rajesh K.Srivastava Ulf Soderlund +2 位作者 Richard E.Ernst Sisir K.Mondal Amiya K.Samal 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期17-18,共2页
The Singhbhum craton of the eastern India consists of the Singhbhum Granite Complex(SGC)and the Chotanagpur Gneissic Complex(CGC)separated by the Singhbhum Mobile Belt(SMB).The CGC is intruded by Mesoproterozoic as we... The Singhbhum craton of the eastern India consists of the Singhbhum Granite Complex(SGC)and the Chotanagpur Gneissic Complex(CGC)separated by the Singhbhum Mobile Belt(SMB).The CGC is intruded by Mesoproterozoic as well as Cretaceous mafic dykes;in 展开更多
关键词 In Implications for Identification of Large Igneous Provinces and Their Possible Continuation on Other Formerly Adjacent Crustal Blocks Neoarchaean-Palaeoproterozoic Mafic Dyke Swarms from the Singhbhum Granite Complex Eastern India
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部