Physical testing of large-scale ship models at sea is a new experimental method.It is a cheap and reliable way to research the environment adaptability of a ship in complex and extreme wave conditions.It is necessary ...Physical testing of large-scale ship models at sea is a new experimental method.It is a cheap and reliable way to research the environment adaptability of a ship in complex and extreme wave conditions.It is necessary to have a stable experimental system for the test.Since the experimental area is large, a remote control system and a telemetry system are essential, and were designed by the authors.An experiment was conducted on the Songhuajiang River to test the systems.The relationship between the model's speed and its electromotor's revolutions was also measured during the model test.The results showed that the two systems make it possible to carry out large-scale model tests at sea.展开更多
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ...To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks.展开更多
This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare ...This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed.展开更多
Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the meta...Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the metal contact interface,LMOM is proposed to analyze the load path and stress distribution characteristics,while GMM is used to calculate and analyze the stress distribution characteristics of the resin layer established between the bushing and composite layers of root insert.To validate the GMM,a tension test is carried out.The result successfully shows that the shear strain expresses a similar strain distribution tendency with the GMM′s results.展开更多
Testing the validity of the conditional capital asset pricing model (CAPM) is a puzzle in the finance literature. Lewellen and Nagel[14] find that the variation in betas and in the equity premium would have to be im...Testing the validity of the conditional capital asset pricing model (CAPM) is a puzzle in the finance literature. Lewellen and Nagel[14] find that the variation in betas and in the equity premium would have to be implausibly large to explain important asset-pricing anomalies. Unfortunately, they do not provide a rigorous test statistic. Based on a simulation study, the method proposed in Lewellen and Nagel[14] tends to reject the null too frequently. We develop a new test procedure and derive its limiting distribution under the null hypothesis. Also, we provide a Bootstrap approach to the testing procedure to gain a good finite sample performance. Both simulations and empirical studies show that our test is necessary for making correct inferences with the conditional CAPM.展开更多
Large size vessels sailing in continuous level ice and broken ice of high concentration are mostly assisted by icebreakers.This is done in order to provide for fast transportation through the North Sea Route and safe ...Large size vessels sailing in continuous level ice and broken ice of high concentration are mostly assisted by icebreakers.This is done in order to provide for fast transportation through the North Sea Route and safe operation in extreme ice conditions.Currently,new large size gas and oil carriers and container ships are being designed and built with beams much greater than the beams of existing icebreakers.At the same time,no mathematical description exists for the breaking mechanism of ice channel edges,when such vessels move under icebreaker escort.This paper suggests a simple method for assessment of the ice resistance in the case of a large ship running in an icebreaker channel;the method is based on modification of well-known semi-empirical methods for calculation of the ice resistance to ships in level and broken ice.The main feature of the proposed calculation scheme consists in that different methods are applied to estimate the ice resistance in broken ice and due to breaking of level ice edges.The combination of these methods gives a deliverable ice resistance of a large size vessel moving under icebreaker assistance in a newly made ice channel.In general,proposed method allows to define the speed of a carrier moving in an ice channel behind a modern linear icebreaker and could be applied at the ship design stage and during development of the marine transportation system.The paper also discusses the ways for further refinement of the assessment procedure suggested.展开更多
Wake separation is crucial to aircraft landing safety and is an important factor in airport operational efficiency.The near-ground evolution characteristics of wake vortices form the foundation of the wake separation ...Wake separation is crucial to aircraft landing safety and is an important factor in airport operational efficiency.The near-ground evolution characteristics of wake vortices form the foundation of the wake separation system design.In this study,we analysed the near-ground evolution of vortices in the wake of a domestic aircraft ARJ21 initialised by the lift-drag model using large eddy simulations based on an adaptive mesh.Evolution of wake vortices formed by the main wing,flap and horizontal tail was discussed in detail.The horizontal tail vortices are the weakest and dissipate rapidly,whereas the flap vortices are the strongest and induce the tip vortex to merge with them.The horizontal tail and flap of an ARJ21 do not significantly influence the circulation evolution,height change and movement trajectory of the wake vortices.The far-field evolution of wake vortices can therefore be analysed using the conventional wake vortex model.展开更多
Into the frame of the French TANDEM project (Tsunamis in the Atlantic and the English ChaNnel: Definition of the Effects through numerical Modelling) Principia has been working on the development and qualification of ...Into the frame of the French TANDEM project (Tsunamis in the Atlantic and the English ChaNnel: Definition of the Effects through numerical Modelling) Principia has been working on the development and qualification of two in-house CFD software: the 2D EOLE-SV (Saint-Venant) model for simulation of large scale tsunami propagation from the source up to coastal scale and the 3D EOLE-NS (Navier-Stokes) model dedicated to tsunami coastal impact modelling. This paper presents a large range of test cases carried out into the frame of the project and dedicated to the validation of numerical codes in various tsunami wave conditions. The main aspects of phenomena such as wave generation, propagation and coastal impact are investigated on academic situations. A real case simulation is concerned as well, the devastating 2011 Tohoku event which is compared with in-situ data.展开更多
基金Supported by the National Defense Foundation under Grant No.51414030204CB0109
文摘Physical testing of large-scale ship models at sea is a new experimental method.It is a cheap and reliable way to research the environment adaptability of a ship in complex and extreme wave conditions.It is necessary to have a stable experimental system for the test.Since the experimental area is large, a remote control system and a telemetry system are essential, and were designed by the authors.An experiment was conducted on the Songhuajiang River to test the systems.The relationship between the model's speed and its electromotor's revolutions was also measured during the model test.The results showed that the two systems make it possible to carry out large-scale model tests at sea.
基金supported by the National Key Research and Development Plan of China(No.2016YFC0600901)the National Natural Science Foundation of China(No.51874311)the Natural Science Foundation of China(No.51904306)。
文摘To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks.
基金This research has been conducted under SEGTRANS project,funded by the Centre for Industrial Technological Development(CDTI,Government of Spain).
文摘This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed.
基金supported jointly by the National Basic Research Program of China("973"Program)(No2014CB046200)the National Science Foundation of Jiangsu Province(No.BK2014059)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China(No.11172135)
文摘Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the metal contact interface,LMOM is proposed to analyze the load path and stress distribution characteristics,while GMM is used to calculate and analyze the stress distribution characteristics of the resin layer established between the bushing and composite layers of root insert.To validate the GMM,a tension test is carried out.The result successfully shows that the shear strain expresses a similar strain distribution tendency with the GMM′s results.
基金the National Nature Science Foundation of China(71131008(Key Project),70871003,70971113)supported by the Fundamental Research Funds for the Central Universities(2013221022)+1 种基金the Natural Science Foundation of Fujian Province(2011J01384)the Natural Science Foundation of China(71301135,71203189,71131008)
文摘Testing the validity of the conditional capital asset pricing model (CAPM) is a puzzle in the finance literature. Lewellen and Nagel[14] find that the variation in betas and in the equity premium would have to be implausibly large to explain important asset-pricing anomalies. Unfortunately, they do not provide a rigorous test statistic. Based on a simulation study, the method proposed in Lewellen and Nagel[14] tends to reject the null too frequently. We develop a new test procedure and derive its limiting distribution under the null hypothesis. Also, we provide a Bootstrap approach to the testing procedure to gain a good finite sample performance. Both simulations and empirical studies show that our test is necessary for making correct inferences with the conditional CAPM.
基金This work was funded by the Russian Science Foundation(Grant No.17-79-20162-П).
文摘Large size vessels sailing in continuous level ice and broken ice of high concentration are mostly assisted by icebreakers.This is done in order to provide for fast transportation through the North Sea Route and safe operation in extreme ice conditions.Currently,new large size gas and oil carriers and container ships are being designed and built with beams much greater than the beams of existing icebreakers.At the same time,no mathematical description exists for the breaking mechanism of ice channel edges,when such vessels move under icebreaker escort.This paper suggests a simple method for assessment of the ice resistance in the case of a large ship running in an icebreaker channel;the method is based on modification of well-known semi-empirical methods for calculation of the ice resistance to ships in level and broken ice.The main feature of the proposed calculation scheme consists in that different methods are applied to estimate the ice resistance in broken ice and due to breaking of level ice edges.The combination of these methods gives a deliverable ice resistance of a large size vessel moving under icebreaker assistance in a newly made ice channel.In general,proposed method allows to define the speed of a carrier moving in an ice channel behind a modern linear icebreaker and could be applied at the ship design stage and during development of the marine transportation system.The paper also discusses the ways for further refinement of the assessment procedure suggested.
基金financial support from the National Natural Science Foundation of China(Grant 91752205)Civil Aviation Joint Fund of NSFC(Grant U1733203)Civil Aviation Safety Capacity Building Project(Grant TM 2019-16-1/3)。
文摘Wake separation is crucial to aircraft landing safety and is an important factor in airport operational efficiency.The near-ground evolution characteristics of wake vortices form the foundation of the wake separation system design.In this study,we analysed the near-ground evolution of vortices in the wake of a domestic aircraft ARJ21 initialised by the lift-drag model using large eddy simulations based on an adaptive mesh.Evolution of wake vortices formed by the main wing,flap and horizontal tail was discussed in detail.The horizontal tail vortices are the weakest and dissipate rapidly,whereas the flap vortices are the strongest and induce the tip vortex to merge with them.The horizontal tail and flap of an ARJ21 do not significantly influence the circulation evolution,height change and movement trajectory of the wake vortices.The far-field evolution of wake vortices can therefore be analysed using the conventional wake vortex model.
文摘Into the frame of the French TANDEM project (Tsunamis in the Atlantic and the English ChaNnel: Definition of the Effects through numerical Modelling) Principia has been working on the development and qualification of two in-house CFD software: the 2D EOLE-SV (Saint-Venant) model for simulation of large scale tsunami propagation from the source up to coastal scale and the 3D EOLE-NS (Navier-Stokes) model dedicated to tsunami coastal impact modelling. This paper presents a large range of test cases carried out into the frame of the project and dedicated to the validation of numerical codes in various tsunami wave conditions. The main aspects of phenomena such as wave generation, propagation and coastal impact are investigated on academic situations. A real case simulation is concerned as well, the devastating 2011 Tohoku event which is compared with in-situ data.