期刊文献+
共找到92,541篇文章
< 1 2 250 >
每页显示 20 50 100
Manipulating the Macroscopic and Microscopic Morphology of Large-Area Gravure-Printed ZnO Films for High-Performance Flexible Organic Solar Cells 被引量:1
1
作者 Zhenguo Wang Jingbo Guo +6 位作者 Yaqin Pan Jin Fang Chao Gong Lixin Mo Qun Luo Jian Lin Changqi Ma 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期229-239,共11页
Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological... Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm. 展开更多
关键词 flexible organic solar cell gravure printing large-area flexible interfacial layer rheology properties zinc oxide
下载PDF
High-Performance and Large-Area Inverted Perovskite Solar Cells Based on NiO_(x) Films Enabled with A Novel Microstructure-Control Technology
2
作者 Guibin Shen Xin Li +7 位作者 Yuqin Zou Hongye Dong Dongping Zhu Yanglin Jiang Xin Ren Ng Fen Lin Peter Müller-Buschbaum Cheng Mu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期153-159,共7页
The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is ... The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells. 展开更多
关键词 interfacial contact inverted and large-area perovskite solar cells photovoltaic materials porous NiO_(x)films renewable energy
下载PDF
Large-Area Preparation of Flexible Carbon Nanofilms with Synergistically Enhanced Transmittance and Conductivity
3
作者 ZHOU Weiya 《Bulletin of the Chinese Academy of Sciences》 2024年第2期101-103,共3页
Large-area flexible transparent conductive films(TCFs)are urgently in great demand for future electronics,optoelectronics,energy devices,and applications in other fields.Indium tin oxide(ITO)TCF,which is widely used i... Large-area flexible transparent conductive films(TCFs)are urgently in great demand for future electronics,optoelectronics,energy devices,and applications in other fields.Indium tin oxide(ITO)TCF,which is widely used in modern technology,is difficult to meet the needs of scientific and technological development(especially the need for a new generation of flexible electronic devices),because indium is a non-renewable resource and expensive,and ITO is inherently brittle. 展开更多
关键词 CONDUCTIVITY filmS TRANSPARENT
下载PDF
Flexible Large-Area Graphene Films of 50-600 nm Thickness with High Carrier Mobility 被引量:4
4
作者 Shiyu Luo Li Peng +13 位作者 Yangsu Xie Xiaoxue Cao Xiao Wang Xiaoting Liu Tingting Chen Zhanpo Han Peidong Fan Haiyan Sun Ying Shen Fan Guo Yuxing Xia Kaiwen Li Xin Ming Chao Gao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期1-14,共14页
Bulk graphene nanofilms feature fast electronic and phonon transport in combination with strong light-matter interaction and thus have great potential for versatile applications,spanning from photonic,electronic,and o... Bulk graphene nanofilms feature fast electronic and phonon transport in combination with strong light-matter interaction and thus have great potential for versatile applications,spanning from photonic,electronic,and optoelectronic devices to charge-stripping and electromagnetic shielding,etc.However,large-area flexible close-stacked graphene nanofilms with a wide thickness range have yet to be reported.Here,we report a polyacrylonitrile-assisted’substrate replacement’strategy to fabricate large-area free-standing graphene oxide/polyacrylonitrile nanofilms(lateral size~20 cm).Linear polyacrylonitrile chains-derived nanochannels promote the escape of gases and enable macro-assembled graphene nanofilms(nMAGs)of 50-600 nm thickness following heat treatment at 3,000℃.The uniform nMAGs exhibit 802-1,540 cm^(2)V-1s-1carrier mobility,4.3-4.7 ps carrier lifetime,and>1,581 W m^(-1)K^(-1)thermal conductivity(n MAG-assembled 10μm-thick films,mMAGs).nMAGs are highly flexible and show no structure damage even after 1.0×10^(5)cycles of folding-unfolding.Furthermore,n MAGs broaden the detection region of graphene/silicon heterojunction from near-infrared to mid-infrared and demonstrate higher absolute electromagnetic interference(EMI)shielding effectiveness than state-of-the-art EMI materials of the same thickness.These results are expected to lead to the broad applications of such bulk nanofilms,especially as micro/nanoelectronic and optoelectronic platforms. 展开更多
关键词 Flexible large-area graphene nanofilm High carrier mobility Mid-infrared detection Electromagnetic interference shielding Heat transfer
下载PDF
Optimization of large-area YBa_(2)Cu_(3)O_(7-δ)thin films by pulsed laser deposition for planar microwave devices 被引量:1
5
作者 熊沛雨 陈赋聪 +8 位作者 冯中沛 杨景婷 夏钰东 袁跃峰 王旭 袁洁 吴云 石兢 金魁 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期186-190,共5页
This paper presents high quality YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films on LaAlO_(3)substrate for microwave devices prepared by pulsed laser deposition(PLD).The double-sided YBCO films cover a large area and have been ... This paper presents high quality YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films on LaAlO_(3)substrate for microwave devices prepared by pulsed laser deposition(PLD).The double-sided YBCO films cover a large area and have been optimized for key parameters relevant to microwave device applications,such as surface morphology and surface resistance(R_(s)).This was achieved by improving the target quality and increasing the oxygen pressure during deposition,respectively.To evaluate the suitability of the YBCO films for microwave devices,a pair of microwave filters based on microstrip fabricated on films from this work and a commercial company were compared.The results show that the YBCO films in this work could completely meet the requirements for microwave devices. 展开更多
关键词 YBCO films pulsed laser deposition(PLD) surface resistance microwave devices
下载PDF
Significantly Improved High-Temperature Energy Storage Performance of BOPP Films by Coating Nanoscale Inorganic Layer 被引量:2
6
作者 Tiandong Zhang Hainan Yu +5 位作者 Young Hoon Jung Changhai Zhang Yu Feng Qingguo Chen Keon Jae Lee Qingguo Chi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期30-38,共9页
Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high tempe... Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high temperature.In this study,growing an inorganic nanoscale coating layer onto the BOPP film's surface is proposed to suppress electrical conduction loss at high temperature,as well as increase its upper operating temperature.Four kinds of inorganic coating layers that have different energy band structure and dielectric property are grown onto the both surface of BOPP films,respectively.The effect of inorganic coating layer on the high-temperature energy storage performance has been systematically investigated.The favorable coating layer materials and appropriate thickness enable the BOPP films to have a significant improvement in high-temperature energy storage performance.Specifically,when the aluminum nitride(AIN)acts as a coating layer,the AIN-BOPP-AIN sandwich-structured films possess a discharged energy density of 1.5 J cm^(-3)with an efficiency of 90%at 125℃,accompanying an outstandingly cyclic property.Both the discharged energy density and operation temperature are significantly enhanced,indicating that this efficient and facile method provides an important reference to improve the high-temperature energy storage performance of polymer-based dielectric films. 展开更多
关键词 coating layer energy storage interfacial barrier polymer films
下载PDF
Flexible, Transparent and Conductive Metal Mesh Films with Ultra‑High FoM for Stretchable Heating and Electromagnetic Interference Shielding 被引量:1
7
作者 Zibo Chen Shaodian Yang +9 位作者 Junhua Huang Yifan Gu Weibo Huang Shaoyong Liu Zhiqiang Lin Zhiping Zeng Yougen Hu Zimin Chen Boru Yang Xuchun Gui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期201-213,共13页
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan... Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications. 展开更多
关键词 Metal mesh Transparent conductive film Stretchable heater Electromagnetic interference shielding
下载PDF
OptoGPT: A foundation model for inverse design in optical multilayer thin film structures 被引量:1
8
作者 Taigao Ma Haozhu Wang L.Jay Guo 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第7期4-16,共13页
Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design... Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously. 展开更多
关键词 multilayer thin film structure inverse design foundation models deep learning structural color
下载PDF
Numerical and experimental study on the falling film flow characteristics with the effect of co-current gas flow in hydrogen liquefaction process 被引量:1
9
作者 Chong-Zheng Sun Yu-Xing Li +2 位作者 Hui Han Xiao-Yi Geng Xiao Lu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1369-1384,共16页
Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat ... Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow. 展开更多
关键词 Hydrogen liquefaction Spiral wound heat exchanger Flow pattern transition Falling film flow
下载PDF
Highly Flexible Graphene-Film-Based Rectenna for Wireless Energy Harvesting 被引量:1
10
作者 Jingwei Zhang Yuchao Wang +2 位作者 Rongguo Song Zongkui Kou Daping He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期320-325,共6页
Herein,we report the design,fabrication,and performance of two wireless energy harvesting devices based on highly flexible graphene macroscopic films(FGMFs).We first demonstrate that benefiting from the high conductiv... Herein,we report the design,fabrication,and performance of two wireless energy harvesting devices based on highly flexible graphene macroscopic films(FGMFs).We first demonstrate that benefiting from the high conductivity of up to 1×10^(6)S m^(-1)and good resistive stability of FGMFs even under extensive bending,the FGMFs-based rectifying circuit(GRC)exhibits good flexibility and RF-to-DC efficiency of 53%at 2.1 GHz.Moreover,we further expand the application of FGMFs to a flexible wideband monopole rectenna and a 2.45 GHz wearable rectenna for harvesting wireless energy.The wideband rectenna at various bending conditions produces a maximum conversion efficiency of 52%,46%,and 44%at the 5th Generation(5G)2.1 GHz,Industrial Long-Term Evolution(LTE)2.3 GHz,and Scientific Medical(ISM)2.45 GHz,respectively.A 2.45 GHz GRC is optimized and integrated with an AMC-backed wearable antenna.The proposed 2.45 GHz wearable rectenna shows a maximum conversion efficiency of 55.7%.All the results indicate that the highly flexible graphene-film-based rectennas have great potential as a wireless power supplier for smart Internet of Things(loT)applications. 展开更多
关键词 flexible rectennas highly flexible graphene-based films wireless energy harvesting
下载PDF
Author Correction to “Enhanced Property of Thin Cuprous Oxide Film Prepared through Green Synthetic Route”
11
作者 Achraf El Kasmi Henning Vieker +3 位作者 Ling-nan Wu AndréBeyer Tarik Chafik Zhenyu Tian 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第4期571-571,共1页
This correction adds some information to our publication[Chin.J.Chem.Phys.32,365–372(2019)]that we previously missed to include.Our previous work published in[Appl.Catal.B Env-iron.186,10(2016)]was based on the same ... This correction adds some information to our publication[Chin.J.Chem.Phys.32,365–372(2019)]that we previously missed to include.Our previous work published in[Appl.Catal.B Env-iron.186,10(2016)]was based on the same sample series but with the focus of explaining the interplay between the catalytic behavior and properties of the cuprous thin films.A superior catalytic performance was demonstrated when water was added in the deposition process[1](see Ref.[47]in our publication corrected here). 展开更多
关键词 films. CATALYTIC CORRECTION
下载PDF
Effects of Thickness and Anisotropic Strain on Polarization Switching Properties of Sub-10nm Epitaxial Hf_(0.5)Zr_(0.5)O_(2)Thin Films
12
作者 Kuan Liu Kai Liu +5 位作者 Xingchang Zhang Jie Fang Feng Jin Wenbin Wu Chao Ma Lingfei Wang 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第11期221-232,共12页
Doped HfO_(2)-based ferroelectric(FE)films are emerging as leading contenders for next-generation FE nonvolatile memories due to their excellent compatibility with complementary metal oxide semiconductor processes and... Doped HfO_(2)-based ferroelectric(FE)films are emerging as leading contenders for next-generation FE nonvolatile memories due to their excellent compatibility with complementary metal oxide semiconductor processes and robust ferroelectricity at nanoscale dimensions.Despite the considerable attention paid to the FE properties of HfO_(2)-based films in recent years,enhancing their polarization switching speed remains a critical research challenge.We demonstrate the strong ferroelectricity of sub-10nm Hf_(0.5)Zr_(0.5)O_(2)(HZO)thin films and show that the polarization switching speed of these thin films can be significantly affected by HZO thickness and anisotropically strained La_(0.67)Sr_(0.33)MO_(3)-buffered layer.Our observations indicate that the HZO thin film thickness and anisotropically strained La_(0.67)Sr_(0.33)MO_(3)layer influence the nucleation of reverse domains by altering the phase composition of the HZO thin film,thereby reducing the polarization switching time.Although the increase in HZO thickness and anisotropic compressive strain hinder the formation of the FE phase,they can enable faster switching.Our findings suggest that FE HZO ultrathin films with polar orthorhombic structures have broad application prospects in microelectronic devices.These insights into novel methods for increasing polarization switching speed are poised to advance the development of high-performance FE devices. 展开更多
关键词 FERROELECTRIC ANISOTROPIC film
下载PDF
Centimeter-Scale Above-Room-Temperature Ferromagnetic Fe_(3)GaTe_(2)Thin Films by Molecular Beam Epitaxy
13
作者 Taikun Wang Yongkang Xu +12 位作者 Yu Liu Xingze Dai Pengfei Yan Jin Wang Shuanghai Wang Yafeng Deng Kun He Caitao Li Ziang Wang Wenqin Zou Rongji Wen Yufeng Hao Liang He 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第10期119-122,共4页
Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-size... Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-sized high-quality Fe_(3)GaTe_(2)thin films need to be prepared.Here,the centimeter-scale thin film samples with high crystal quality and above-room-temperature ferromagnetism with strong perpendicular magnetic anisotropy were prepared by molecular beam epitaxy technology.Furthermore,the Tc of the samples raises as the film thickness increases,and reaches 367K when the film thickness is 60 nm.This study provides material foundations for the new generation of van der Waals spintronic devices and paves the way for the commercial application of Fe_(3)GaTe_(2). 展开更多
关键词 EPITAXY film magnetic
下载PDF
Ultrathin Limit on the Anisotropic Superconductivity of Single-Layered Cuprate Films
14
作者 冉峰 陈潘 +5 位作者 李丁艺 熊沛雨 樊子鑫 凌浩铭 梁艳 张坚地 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第2期94-101,共8页
Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity.By atomically layer-by-layer growth with oxide molecular beam epitaxy,we demonstrate that La... Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity.By atomically layer-by-layer growth with oxide molecular beam epitaxy,we demonstrate that La_(2−x)Sr_(x)CuO_(4)(x=0.15)thin films remain superconducting down to 2 unit cells of thickness but quickly reach the maximum superconducting transition temperature at and above 4 unit cells.By fitting the critical magnetic field(μ0H_(c2)),we show that the anisotropy of the film’s superconductivity increases with decreasing film thickness,indicating that the superconductivity of the film gradually evolves from weak three-to two-dimensional character.These results are helpful to gain more insight into the nature of high-temperature superconductivity with dimensionality. 展开更多
关键词 dimensionality film evolve
下载PDF
Effect of drying methods on perovskite films and solar cells
15
作者 Ling Liu Chuantian Zuo +3 位作者 Guang-Xing Liang Hua Dong Jingjing Chang Liming Ding 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期1-5,共5页
The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that af... The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that affect the performance of perovskite films.Various deposition methods have been developed to make perovskite films,including spin-coating,slotdie coating. 展开更多
关键词 PEROVSKITE filmS CRITICAL
下载PDF
Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
16
作者 范凤国 段林彤 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期589-595,共7页
The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biom... The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biomedical devices.This article presents the elucidation of the properties of nanoparticle films.Here,a flexible film is fabricated based on polyethylene terephthalate(PET)and magnetic iron oxide at the nanoscale using layer-by-layer technology.The 2D thin flexible film material can be bent at different angles from 0°to 360°.With an increase in elastic deformation angles,the magnetocaloric effect of the film gradually increases in the alternating magnetic field.The test results from a vibrating sample magnetometer and a low-frequency impedance analyzer demonstrate that the film has a good magnetic response and anisotropy.The magnetocaloric effect and magnetic induction effect are controlled by deformation,providing a new idea for the application of elastic films.It combines the flexibility of the nanoparticle PET substrate and,in the future,it may be used for skin adhesion for administration and magnetic stimulation control. 展开更多
关键词 nanoparticle film deformation magnetic properties flexible substrates
下载PDF
Preparation of a zeolite-palladium composite membrane for hydrogen separation:Influence of zeolite film on membrane stability
17
作者 Hongmei Wu Xinyu Liu Yu Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期44-52,共9页
With the development of hydrogen energy,palladium-based membranes have been widely used in hydrogen separation and purification.However,the poor chemical stability of palladium composite membranes limits their commerc... With the development of hydrogen energy,palladium-based membranes have been widely used in hydrogen separation and purification.However,the poor chemical stability of palladium composite membranes limits their commercial applications.In this study,a zeolite-palladium composite membrane with a sandwich-like structure was obtained by using a TS-1 zeolite film grown on the surface of palladium membrane.The membrane microstructure was characterized by SEM and EDX.The effects of the TS-1 film on the hydrogen permeability and stability of palladium composite membrane were investigated in details.Benefited from the protection of the TS-1 zeolite film,the stability of palladium composite membrane was enhanced.The results indicate that the TS-1-Pd composite membrane was stable after eight cycles of the temperature exchange cycles between 773 K and 623 K.Especially,the loss of hydrogen permeance for TS-1-Pd composite membrane was much smaller than that of the pure palladium membrane when the membrane was tested in the presence of C3H6atmosphere.It indicated that the TS-1-Pd composite membrane had better chemical stability in comparison with pure palladium membrane,owing to its sandwich-like structure.This work provides an efficient way for the deposition of zeolite film on palladium membrane to enhance the membrane stability. 展开更多
关键词 Palladium membrane Zeolite film Hydrogen separation STABILITY
下载PDF
Three-dimensionally oriented organization of hexagonal MIL-96 microplates toward superior film microstructure
18
作者 Sixing Chen Xinmiao Jin +3 位作者 Yuyang Wu Taotao Ji Fei Wang Yi Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期69-73,共5页
Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane a... Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane and out-of-plane orientations remains a grand challenge.In this study,we reported the preparation of three-dimensionally oriented MIL-96 layers through combining morphology control of MIL-96 seeds with addition of polyvinylpyrrolidone surfactants and arachidonic acids.The three-dimensionally oriented MIL-96 film was readily obtained through in-plane epitaxial growth.It is anticipated that the aforementioned protocol can be effective for obtaining diverse MOF films with a three-dimensionally oriented organization. 展开更多
关键词 Metaleorganic framework film Orientation Epitaxial growth Morphological control
下载PDF
Using Electrodeposition of Carboxylated Chitosan for Green Preparation of Copper Nanoclusters and Nanocomposite Films
19
作者 ZHANG Xiaoli LI Tingxue +4 位作者 WANG Qinghua YANG Yan ZHANG Chenyu LIU Yaning WANG Yifeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1348-1357,共10页
On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient ... On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient and eco-friendly process,mild conditions,and simple post-treatment.The experimental results reveal that a homogeneous deposited film(Cu NCs/CCS nanocomposite film)is generated on the Cu plate(the anode)after electrodeposition,which exhibits an obvious red florescence.The results from TEM observation suggest there are nanoparticles(with the average particle size of 2.3 nm)in the deposited film.Spectral analysis results both demonstrate the existence of Cu NCs in the deposited film.Moreover,the Cu NCs/CCS film modified electrode is directly created through electrodeposition of CCS,which enables promising application in the electrochemical sensing.By means of fluorescence properties of Cu NCs,the Cu NCs/CCS film also owns the potential in fluorescence detection.Therefore,this work builds a novel method for the green synthesis of Cu NCs,meanwhile it offers a convenient and new electrodeposition strategy to prepare polysaccharide-based Cu NCs nanocomposites for uses in functional nanocomposites and bioelectronic devices. 展开更多
关键词 nanocomposite films copper nanoclusters ELECTRODEPOSITION carboxylated chitosan POLYSACCHARIDES
下载PDF
Multifunctional phase change film with high recyclability, adjustable thermal responsiveness, and intrinsic self-healing ability for thermal energy storage
20
作者 Bo Yang Xuelai Zhang +2 位作者 Jun Ji Weisan Hua Miaomiao Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期216-227,I0005,共13页
Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,whic... Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability. 展开更多
关键词 Phase change film Multifunctional material Energy storage SELF-HEALING RECYCLABILITY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部