Trapping light in a photonic integrated circuit can findmany applications, such as optical storage, optical-packetswitching, optical sensing and microwave photonics. Althoughthere are many ways to implement an integra...Trapping light in a photonic integrated circuit can findmany applications, such as optical storage, optical-packetswitching, optical sensing and microwave photonics. Althoughthere are many ways to implement an integrated opticalbuffer, such as the use of ring resonators, photonic crystals,Bragg gratings and spiral waveguides, it is still challenging torealize optical buffers with long storage time and low loss.Photonic integrated circuits with small size are of interest forimplementing optical buffers. In general, three materials systemsare employed to implement integrated optical buffers, silicon,silicon nitride and indium phosphide. However, it is hardto implement optical buffers with a storage time over tens ofnanoseconds due to the intrinsic high loss of these materials.展开更多
Through many years' cooperation,SGCC and Shanghai Silicate Research Institute of Chinese Academy of Science successfully developed 650 ampere-hours capacity sodium-sulfur monomeric storage battery with the indepen...Through many years' cooperation,SGCC and Shanghai Silicate Research Institute of Chinese Academy of Science successfully developed 650 ampere-hours capacity sodium-sulfur monomeric storage battery with the independent intellectual property展开更多
With the increase of dc based renewable energy generation and dc loads,the medium voltage dc(MVDC)distribution network is becoming a promising option for more efficient system integration.In particular,large-capacity ...With the increase of dc based renewable energy generation and dc loads,the medium voltage dc(MVDC)distribution network is becoming a promising option for more efficient system integration.In particular,large-capacity photovoltaic(PV)-based power generation is growing rapidly,and a corresponding power conversion system is critical to integrate these large PV systems into MVDC power grid.Different from traditional ac grid-connected converters,the converter system for dc grid interfaced PV system requires large-capacity dc conversion over a wide range of ultra-high voltage step-up ratios.This is an important issue,yet received limited research so far.In this paper,a thorough study of dc-dc conversion system for a medium-voltage dc grid-connected PV system is conducted.The required structural features for such a conversion system are first discussed.Based on these features,the conversion system is classified into four categories by series-parallel connection scheme of power modules.Then two existing conversion system configurations as well as a proposed solution are compared in terms of input/output performance,conversion efficiency,modulation method,control complexity,power density,reliability,and hardware cost.In-depth analysis is carried out to select the most suitable conversion systems in various application scenarios.展开更多
首先分析了大容量直流输电(large-capacity high voltage direct current,large-capacity HVDC)系统常规接入模式(general connection mode,GCM)、分极接入模式(separate poles mode,SPM)和分层接入模式(hierarchical connection mode,H...首先分析了大容量直流输电(large-capacity high voltage direct current,large-capacity HVDC)系统常规接入模式(general connection mode,GCM)、分极接入模式(separate poles mode,SPM)和分层接入模式(hierarchical connection mode,HCM)的结构特点,对比了3种接入模式对系统中其他直流系统多馈入短路比(multi-feed short-circuit ratio,M ISCR)的影响,并得到落点选择的约束条件,使受端交流系统对直流系统的电压支撑能力整体提升,较好地平衡了限制短路电流与增加多馈入短路比间的矛盾。之后,提出了基于最大功率曲线法的静态稳定接纳系数指标用于判断受端电网接纳直流功率的能力。最后,结合南方电网2020年的规划数据,从多个方面对比分析了3种接入模式的优缺点,为直流系统接入模式的规划提供决策参考和技术支撑。展开更多
文摘Trapping light in a photonic integrated circuit can findmany applications, such as optical storage, optical-packetswitching, optical sensing and microwave photonics. Althoughthere are many ways to implement an integrated opticalbuffer, such as the use of ring resonators, photonic crystals,Bragg gratings and spiral waveguides, it is still challenging torealize optical buffers with long storage time and low loss.Photonic integrated circuits with small size are of interest forimplementing optical buffers. In general, three materials systemsare employed to implement integrated optical buffers, silicon,silicon nitride and indium phosphide. However, it is hardto implement optical buffers with a storage time over tens ofnanoseconds due to the intrinsic high loss of these materials.
文摘Through many years' cooperation,SGCC and Shanghai Silicate Research Institute of Chinese Academy of Science successfully developed 650 ampere-hours capacity sodium-sulfur monomeric storage battery with the independent intellectual property
基金Supported by the National Natural Science Foundation of China(51811540405,52007096)National Key R&D Program of China(2016YFB0900205).
文摘With the increase of dc based renewable energy generation and dc loads,the medium voltage dc(MVDC)distribution network is becoming a promising option for more efficient system integration.In particular,large-capacity photovoltaic(PV)-based power generation is growing rapidly,and a corresponding power conversion system is critical to integrate these large PV systems into MVDC power grid.Different from traditional ac grid-connected converters,the converter system for dc grid interfaced PV system requires large-capacity dc conversion over a wide range of ultra-high voltage step-up ratios.This is an important issue,yet received limited research so far.In this paper,a thorough study of dc-dc conversion system for a medium-voltage dc grid-connected PV system is conducted.The required structural features for such a conversion system are first discussed.Based on these features,the conversion system is classified into four categories by series-parallel connection scheme of power modules.Then two existing conversion system configurations as well as a proposed solution are compared in terms of input/output performance,conversion efficiency,modulation method,control complexity,power density,reliability,and hardware cost.In-depth analysis is carried out to select the most suitable conversion systems in various application scenarios.
文摘首先分析了大容量直流输电(large-capacity high voltage direct current,large-capacity HVDC)系统常规接入模式(general connection mode,GCM)、分极接入模式(separate poles mode,SPM)和分层接入模式(hierarchical connection mode,HCM)的结构特点,对比了3种接入模式对系统中其他直流系统多馈入短路比(multi-feed short-circuit ratio,M ISCR)的影响,并得到落点选择的约束条件,使受端交流系统对直流系统的电压支撑能力整体提升,较好地平衡了限制短路电流与增加多馈入短路比间的矛盾。之后,提出了基于最大功率曲线法的静态稳定接纳系数指标用于判断受端电网接纳直流功率的能力。最后,结合南方电网2020年的规划数据,从多个方面对比分析了3种接入模式的优缺点,为直流系统接入模式的规划提供决策参考和技术支撑。