As one of the earliest species used in dendrochronological studies, Larix responds sensitively to climate change. In this study, nine larch species and one variety from eleven sites were collected to study the growth ...As one of the earliest species used in dendrochronological studies, Larix responds sensitively to climate change. In this study, nine larch species and one variety from eleven sites were collected to study the growth characteristics of tree-ring width using dendrochronological methods. Ten residual tree-ring chronologies were developed to analyze their relationships with regional standardized anomaly series by Pearson’s correlation analysis. The results suggest that most of the chronologies had significantly positive correlations with the mean temperature and mean maximum temperature in May. The spring temperature evidently limited the radial growth of the larch species without precipitation control. The largest mean tree-ring width was found in Himalayan Larch in Jilong, whereas Master Larch in Si’er reflected the smallest mean value. Both species presented little climate information in this study. Chinese, Potanin, and Tibetan larches are significantly correlated with climate change, implying a huge potential for climate history reconstruction. The elevation of the sampling sites appears to be an important condition for tree-ring growth of larches responding to climate factors.展开更多
基金supported by National Basic Research Program of China (Grant No. 2009CB421307)National Natural Science Foundation of China (Grant Nos. 30270227, 90102005)
文摘As one of the earliest species used in dendrochronological studies, Larix responds sensitively to climate change. In this study, nine larch species and one variety from eleven sites were collected to study the growth characteristics of tree-ring width using dendrochronological methods. Ten residual tree-ring chronologies were developed to analyze their relationships with regional standardized anomaly series by Pearson’s correlation analysis. The results suggest that most of the chronologies had significantly positive correlations with the mean temperature and mean maximum temperature in May. The spring temperature evidently limited the radial growth of the larch species without precipitation control. The largest mean tree-ring width was found in Himalayan Larch in Jilong, whereas Master Larch in Si’er reflected the smallest mean value. Both species presented little climate information in this study. Chinese, Potanin, and Tibetan larches are significantly correlated with climate change, implying a huge potential for climate history reconstruction. The elevation of the sampling sites appears to be an important condition for tree-ring growth of larches responding to climate factors.