The spatial structure of the velocity field in a stirred vessel with water has been measured and analyzed using the laser Doppler velocimeter technique, with the immersing depth and agitation speed of the impeller re-...The spatial structure of the velocity field in a stirred vessel with water has been measured and analyzed using the laser Doppler velocimeter technique, with the immersing depth and agitation speed of the impeller re-maining approximately constant. The experimental results were provided such as the mean velocity field, fluctuat-ing velocities, turbulent kinetic energy, Reynolds shear stress and time series of the velocity in the stirred tank. These results probably provided the valuable basis to further optimize and enlarge the stirred tank in the industrial process.展开更多
A dual-frequency laser Doppler velocimeter implemented by a dual-polarization fiber grating laser is proposed, with the two laser frequencies produced by the two orthogonally polarized laser outputs of the fiber grati...A dual-frequency laser Doppler velocimeter implemented by a dual-polarization fiber grating laser is proposed, with the two laser frequencies produced by the two orthogonally polarized laser outputs of the fiber grating laser. The reflected laser outputs from a moving target experience the Doppler frequency shift, which is shown to be linearly related to the velocity and the beat note frequency difference between the laser outputs and the reflected light. With a digital frequency demodulation scheme, a high sensitivity of 0.64 MHz/(m/s) and a velocity resolution of less than 0.5% of the velocity for velocity measurement are demonstrated, which shows that the proposed laser Doppler velocimeter is capable of measurement of wide range of velocity.展开更多
A water track laser Doppler velocimeter(LDV)is developed with advantages of high update rate,high real-time performance,high concealment,light weight,and small dimensions.The water track LDV measures the advance veloc...A water track laser Doppler velocimeter(LDV)is developed with advantages of high update rate,high real-time performance,high concealment,light weight,and small dimensions.The water track LDV measures the advance velocity of the underwater vehicle with respect to the surrounding water.The experimental results show that the water track LDV has an accuracy of 96.4%when the moving velocity of the vehicle with respect to the ground exceeds 0.25 m/s.Thus,the water track LDV is promising in the application of underwater navigation to aid the strapdown inertial navigation system.展开更多
Laser Doppler vibrometer (LDV) has a potential application prospect in remote sensing. Based on the correlation theories of heterodyne detection, a LDV system with a configuration of all fiber and heterodyne techniq...Laser Doppler vibrometer (LDV) has a potential application prospect in remote sensing. Based on the correlation theories of heterodyne detection, a LDV system with a configuration of all fiber and heterodyne techniques is developed to detect the sound signal through the vibration of glass. Experimental results show that the LDV system has an ability to acquire the real-time speech signal 25 m away through glass. While, the system signal-to-noise ratio (SNR) value decreases with the increase of the glass thickness and the detection distance.展开更多
The turbo air classifier is widely used powder classification equipment in a variety of fields. The flow field characteristics of the turbo air classifier are important basis for the improvement of the turbo air class...The turbo air classifier is widely used powder classification equipment in a variety of fields. The flow field characteristics of the turbo air classifier are important basis for the improvement of the turbo air classifier's structural design. The flow field characteristics of the rotor cage in turbo air classifiers were investigated trader different operating conditions by laser Doppler velocimeter(LDV), and a measure diminishing the axial velocity is proposed. The investigation results show that the tangential velocity of the air flow inside the rotor cage is different from the rotary speed of the rotor cage on the same measurement point due to the influences of both the negative pressure at the exit and the rotation of the rotor cage. The tangential velocity of the air flow likewise decreases as the radius decreases in the case of the rotor cage's low rotary speed. In contrast, the tangential velocity of the air flow increases as the radius decreases in the case of the rotor cage's high rotary speed. Meanwhile, the vortex inside the rotor cage is found to occur near the pressure side of the blade when the rotor cage's rotary speed is less than the tangential velocity of air flow. On the contrary, the vortex is found to occur near the blade suction side once the rotor cage's rotary speed is higher than the tangential velocity of air flow. Inside the rotor cage, the axial velocity could not be disregarded and is largely determined by the distances between the measurement point and the exit.展开更多
In order to improve the resolution of seismic acquisition,a new seismic acquisition system based on tangential laser Doppler effect with an optimized differential optical configuration is proposed.The relative movemen...In order to improve the resolution of seismic acquisition,a new seismic acquisition system based on tangential laser Doppler effect with an optimized differential optical configuration is proposed.The relative movement of the inertia object and the immobile frame is measured by laser Doppler effect,which can avoid the electromagnetic and thermometric interference,and the adoption of frequency-modulated (FM) transmission can improve the ability of anti-jamming.The frequency bandwidth is properly determined by analyzing the frequency of the Doppler signal.The velocity, displacement,acceleration, and frequency to be measured can be real-time acquired by frequency/velocity (F/V) converting the FM Doppler signal. A 100-dB dynamic range and the linear frequency range of 1.0 to 1000 Hz are realized.展开更多
Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity...Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity slip between gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) x 104 Pa. The relaxation time corresponding to this transient process is in the range of 0.015-0.090ms for the two-phase flow formed inside the LJ and less than 0.5ms outside the LJ. It demonstrates the unique performance of this system for application to fast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulations of the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside the LJ, it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach number decreases. Due to compression by the shock wave at the end of the LJ, the flow pattern becomes two dimensional and viscous outside the LJ. Laser Doppler velocirneter (LDV) measurements of droplet velocities outside the LJ are in reasonably good agreement with the results of the simulation.展开更多
A turbulent separation-rcattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter.The turbulent boundary layer separates on the lower curved wall...A turbulent separation-rcattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter.The turbulent boundary layer separates on the lower curved wall under strong pressure gradient and then reattaches on a parallel channel.At the inlet of the diffuser,Reynolds number based on the diffuser height is 1.2×10~5 and the velocity is 25.2m/s.The re- sults of experiments are presented and analyzed in new defined streamline-aligned coordinates.The experiment shows that after Transitory Detachment Reynolds shear stress is negative in the near-wall backflow region. Their characteristics are approximately the same as in simple turbulent shear layers near the maximum Reynolds shear stress.A scale is formed using the maximum Reynolds shear stresses.It is found that a Reynolds shear stress similarity exists from separation to reattachment and the Schofield-Perry velocity law ex- ists in the forward shear flow.Both profiles are used in the experimental work that leads to the design of a new eddy-viscosity model.The length scale is taken from that developed by Schofield and Perry.The composite velocity scale is formed by the maximum Reynolds shear stress and the Schofield Perry velocity scale as well as the edge velocity of the boundary layer.The results of these experiments are presented in this paper展开更多
To address the challenges of non-cooperative and remote acoustic detection, an all-fiber laser Doppler vibrometer(LDV) is established. The all-fiber LDV system can offer the advantages of smaller size, lightweight des...To address the challenges of non-cooperative and remote acoustic detection, an all-fiber laser Doppler vibrometer(LDV) is established. The all-fiber LDV system can offer the advantages of smaller size, lightweight design and robust structure, hence it is a better fit for remote speech detection. In order to improve the performance and the efficiency of LDV for long-range hearing, the speech enhancement technology based on optimally modified log-spectral amplitude(OM-LSA) algorithm is used. The experimental results show that the comprehensible speech signals within the range of 150 m can be obtained by the proposed LDV. The signal-to-noise ratio(SNR) and mean opinion score(MOS) of the LDV speech signal can be increased by 100% and 27%, respectively, by using the speech enhancement technology. This all-fiber LDV, which combines the speech enhancement technology, can meet the practical demand in engineering.展开更多
Measurements of characteristics by means of a two-component Laser DopplerVelocimeter (LDV) were carried out in turbulent boundary layers over both a symmetric V-shapedribbed plate and a smooth one in a low speed wind ...Measurements of characteristics by means of a two-component Laser DopplerVelocimeter (LDV) were carried out in turbulent boundary layers over both a symmetric V-shapedribbed plate and a smooth one in a low speed wind tunnel. The present results clearly indicate thatthe logarithmic velocity profile over the riblets surface is shifted upward with a 30. 9% increasein the thickness of the viscous sublayer. Also a change in the log-law region is found. And themaximum value of streamwise velocity fluctuations is reduced by approximately 17%. The skewness andflatness factors do not show any change besides those in the region of y^+ 【 0. 6 . It is evidentthat the Reynolds shear stress over the riblets is reduced. Further more, in log-law region, theReynolds shear stress has a larger reduction of up to 18%.展开更多
In order to study the flow characteristics in water bodies with rigid aquatic vegetation,series of laboratory experiments are carried out in an open channel,in which glass rods are used as plants with diameters of 6mm...In order to study the flow characteristics in water bodies with rigid aquatic vegetation,series of laboratory experiments are carried out in an open channel,in which glass rods are used as plants with diameters of 6mm,8mm and 10mm,respectively.For each diameter of glass rods,four typical cases are considered with various densities and arrangements of glass rods.The flow velocities in the four cases are measured by the 3-D laser Doppler velocimeter(LDV).The water surface slope,the flow velocity,the water head loss,the vegetation drag force and the hydraulic slope are calculated,analyzed and discussed.The horizontal,vertical and total vegetation densities in the vegetation area are defined and the relationship between these physical parameters and the water surface slope are studied.The head loss and the hydraulic slope in the vegetation area are also calculated,compared and analyzed.It is indicated that the water surface slope and velocity,the head loss and the hydraulic slope in the vegetation area have a close relationship with the arrangement,the density,and the plant diameter of the vegetation.展开更多
A submerged,vertical turbulent plane water jet impinging onto a free surface will be self-excited into a flapping oscillation when the jet velocity,leaving the jet orifice,exceeds a critical value.The flapping phenome...A submerged,vertical turbulent plane water jet impinging onto a free surface will be self-excited into a flapping oscillation when the jet velocity,leaving the jet orifice,exceeds a critical value.The flapping phenomenon was verified simultaneously in this paper by laser Doppler velocimeter measurement and numerical analyses with volume of fluid approach coupled with a large eddy simulation turbulent model.The general agreement of mean velocities between numerical predictions and experimental results in self-similar region is good for two cases:Reynolds numbers 2090 and 2970,which correspond to the stable impinging jet and flapping jet.Results show that the flapping jet is a new flow pattern for submerged turbulent plane jets with characteristic flapping frequency,and that the decay of the mean velocity along the jet centerline is considerably faster than that of the stable impinging state.展开更多
The velocities of boundary layer flows between two parallel oscillating plates separated by small distance, i.e., in so called narrow channel, were theoretically and experimentally studied. The focus was on the lamina...The velocities of boundary layer flows between two parallel oscillating plates separated by small distance, i.e., in so called narrow channel, were theoretically and experimentally studied. The focus was on the laminar case where the Reynolds number ReA is much smaller than the transition value. The theoretical analysis of the Stokes layer in oscillating flow over a narrow channel was made first. Then Laser Doppler Velocimeter (LDV) was employed to measure the Stokes boundary layer above an oscillating flat plate and inside the oscillating narrow channel at various ReH numbers. At the same time, the phase angle difference along the vertical direction in both analysis and experiment were provided. The good agreements are shown between the measured results and the theoretical solution.展开更多
Recently, development of high technology has been required for the formation of thin uniform film in manufacturing processes of semiconductor as the semiconductor instruments become more sophisticated. Spin coating is...Recently, development of high technology has been required for the formation of thin uniform film in manufacturing processes of semiconductor as the semiconductor instruments become more sophisticated. Spin coating is usually used for spreading photoresist on a wafer surface. However, since rotating speed of the disk is very high in spin coating, the dropped photoresist scarers outward and reattaches on the film surface. A catch cup is set up outside the wafer in spin coating, and scattered photoresist mist is removed from the wafer edge by the exhaust flow generated at the gap between the wafer edge and the catch cup. In the dry process of a spin coating, it is a serious concern that the film thickness increases near the wafer edge in the case of low rotating speed. The purpose of this study is to make clear the effect of the catch cup geometry on the 3D boundary layer flow over the wafer surface and the drying rate of liquid film.展开更多
基金Supported by the Natural Science Foundation of Inner Mongolia (No.200408020715).
文摘The spatial structure of the velocity field in a stirred vessel with water has been measured and analyzed using the laser Doppler velocimeter technique, with the immersing depth and agitation speed of the impeller re-maining approximately constant. The experimental results were provided such as the mean velocity field, fluctuat-ing velocities, turbulent kinetic energy, Reynolds shear stress and time series of the velocity in the stirred tank. These results probably provided the valuable basis to further optimize and enlarge the stirred tank in the industrial process.
基金supported by the National Natural Science Foundation of China under Grant Nos.11474133,61235005,and 61307100
文摘A dual-frequency laser Doppler velocimeter implemented by a dual-polarization fiber grating laser is proposed, with the two laser frequencies produced by the two orthogonally polarized laser outputs of the fiber grating laser. The reflected laser outputs from a moving target experience the Doppler frequency shift, which is shown to be linearly related to the velocity and the beat note frequency difference between the laser outputs and the reflected light. With a digital frequency demodulation scheme, a high sensitivity of 0.64 MHz/(m/s) and a velocity resolution of less than 0.5% of the velocity for velocity measurement are demonstrated, which shows that the proposed laser Doppler velocimeter is capable of measurement of wide range of velocity.
基金supported by the Major Basic Autonomous Research Project of College of Advanced Interdisciplinary Studies,National University of Defense Technology,China(No.ZDJC19-12)the Natural Science Foundation of Hunan Province,China(No.2021JJ30782)。
文摘A water track laser Doppler velocimeter(LDV)is developed with advantages of high update rate,high real-time performance,high concealment,light weight,and small dimensions.The water track LDV measures the advance velocity of the underwater vehicle with respect to the surrounding water.The experimental results show that the water track LDV has an accuracy of 96.4%when the moving velocity of the vehicle with respect to the ground exceeds 0.25 m/s.Thus,the water track LDV is promising in the application of underwater navigation to aid the strapdown inertial navigation system.
文摘Laser Doppler vibrometer (LDV) has a potential application prospect in remote sensing. Based on the correlation theories of heterodyne detection, a LDV system with a configuration of all fiber and heterodyne techniques is developed to detect the sound signal through the vibration of glass. Experimental results show that the LDV system has an ability to acquire the real-time speech signal 25 m away through glass. While, the system signal-to-noise ratio (SNR) value decreases with the increase of the glass thickness and the detection distance.
基金supported by National Natural Science Foundation of China (Grant No. 50474035)
文摘The turbo air classifier is widely used powder classification equipment in a variety of fields. The flow field characteristics of the turbo air classifier are important basis for the improvement of the turbo air classifier's structural design. The flow field characteristics of the rotor cage in turbo air classifiers were investigated trader different operating conditions by laser Doppler velocimeter(LDV), and a measure diminishing the axial velocity is proposed. The investigation results show that the tangential velocity of the air flow inside the rotor cage is different from the rotary speed of the rotor cage on the same measurement point due to the influences of both the negative pressure at the exit and the rotation of the rotor cage. The tangential velocity of the air flow likewise decreases as the radius decreases in the case of the rotor cage's low rotary speed. In contrast, the tangential velocity of the air flow increases as the radius decreases in the case of the rotor cage's high rotary speed. Meanwhile, the vortex inside the rotor cage is found to occur near the pressure side of the blade when the rotor cage's rotary speed is less than the tangential velocity of air flow. On the contrary, the vortex is found to occur near the blade suction side once the rotor cage's rotary speed is higher than the tangential velocity of air flow. Inside the rotor cage, the axial velocity could not be disregarded and is largely determined by the distances between the measurement point and the exit.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 40274046.
文摘In order to improve the resolution of seismic acquisition,a new seismic acquisition system based on tangential laser Doppler effect with an optimized differential optical configuration is proposed.The relative movement of the inertia object and the immobile frame is measured by laser Doppler effect,which can avoid the electromagnetic and thermometric interference,and the adoption of frequency-modulated (FM) transmission can improve the ability of anti-jamming.The frequency bandwidth is properly determined by analyzing the frequency of the Doppler signal.The velocity, displacement,acceleration, and frequency to be measured can be real-time acquired by frequency/velocity (F/V) converting the FM Doppler signal. A 100-dB dynamic range and the linear frequency range of 1.0 to 1000 Hz are realized.
基金Supported by the National Natural Science Foundation of China (No. 29876022) and Grant of State Key Laboratory of High Speed Hydrodynamics (No. 2007).
文摘Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity slip between gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) x 104 Pa. The relaxation time corresponding to this transient process is in the range of 0.015-0.090ms for the two-phase flow formed inside the LJ and less than 0.5ms outside the LJ. It demonstrates the unique performance of this system for application to fast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulations of the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside the LJ, it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach number decreases. Due to compression by the shock wave at the end of the LJ, the flow pattern becomes two dimensional and viscous outside the LJ. Laser Doppler velocirneter (LDV) measurements of droplet velocities outside the LJ are in reasonably good agreement with the results of the simulation.
文摘A turbulent separation-rcattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter.The turbulent boundary layer separates on the lower curved wall under strong pressure gradient and then reattaches on a parallel channel.At the inlet of the diffuser,Reynolds number based on the diffuser height is 1.2×10~5 and the velocity is 25.2m/s.The re- sults of experiments are presented and analyzed in new defined streamline-aligned coordinates.The experiment shows that after Transitory Detachment Reynolds shear stress is negative in the near-wall backflow region. Their characteristics are approximately the same as in simple turbulent shear layers near the maximum Reynolds shear stress.A scale is formed using the maximum Reynolds shear stresses.It is found that a Reynolds shear stress similarity exists from separation to reattachment and the Schofield-Perry velocity law ex- ists in the forward shear flow.Both profiles are used in the experimental work that leads to the design of a new eddy-viscosity model.The length scale is taken from that developed by Schofield and Perry.The composite velocity scale is formed by the maximum Reynolds shear stress and the Schofield Perry velocity scale as well as the edge velocity of the boundary layer.The results of these experiments are presented in this paper
基金supported by the National Natural Science Foundation of China(No.61205143)
文摘To address the challenges of non-cooperative and remote acoustic detection, an all-fiber laser Doppler vibrometer(LDV) is established. The all-fiber LDV system can offer the advantages of smaller size, lightweight design and robust structure, hence it is a better fit for remote speech detection. In order to improve the performance and the efficiency of LDV for long-range hearing, the speech enhancement technology based on optimally modified log-spectral amplitude(OM-LSA) algorithm is used. The experimental results show that the comprehensible speech signals within the range of 150 m can be obtained by the proposed LDV. The signal-to-noise ratio(SNR) and mean opinion score(MOS) of the LDV speech signal can be increased by 100% and 27%, respectively, by using the speech enhancement technology. This all-fiber LDV, which combines the speech enhancement technology, can meet the practical demand in engineering.
文摘Measurements of characteristics by means of a two-component Laser DopplerVelocimeter (LDV) were carried out in turbulent boundary layers over both a symmetric V-shapedribbed plate and a smooth one in a low speed wind tunnel. The present results clearly indicate thatthe logarithmic velocity profile over the riblets surface is shifted upward with a 30. 9% increasein the thickness of the viscous sublayer. Also a change in the log-law region is found. And themaximum value of streamwise velocity fluctuations is reduced by approximately 17%. The skewness andflatness factors do not show any change besides those in the region of y^+ 【 0. 6 . It is evidentthat the Reynolds shear stress over the riblets is reduced. Further more, in log-law region, theReynolds shear stress has a larger reduction of up to 18%.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11861003,11761005).
文摘In order to study the flow characteristics in water bodies with rigid aquatic vegetation,series of laboratory experiments are carried out in an open channel,in which glass rods are used as plants with diameters of 6mm,8mm and 10mm,respectively.For each diameter of glass rods,four typical cases are considered with various densities and arrangements of glass rods.The flow velocities in the four cases are measured by the 3-D laser Doppler velocimeter(LDV).The water surface slope,the flow velocity,the water head loss,the vegetation drag force and the hydraulic slope are calculated,analyzed and discussed.The horizontal,vertical and total vegetation densities in the vegetation area are defined and the relationship between these physical parameters and the water surface slope are studied.The head loss and the hydraulic slope in the vegetation area are also calculated,compared and analyzed.It is indicated that the water surface slope and velocity,the head loss and the hydraulic slope in the vegetation area have a close relationship with the arrangement,the density,and the plant diameter of the vegetation.
基金supported by the National Natural Science Foundation of China(Grant No.10472046)the Priority Academic Program Development of Jiangsu Higher Education Institutions,grants from the Postgraduate Research and Innovation Project of Jiangsu Province(Grant No.CX08B_035Z)PhD Thesis Innovation and Excellence Fund of Nanjing University of Aeronautics&Astronautics(Grant No.BCXJ08-01)
文摘A submerged,vertical turbulent plane water jet impinging onto a free surface will be self-excited into a flapping oscillation when the jet velocity,leaving the jet orifice,exceeds a critical value.The flapping phenomenon was verified simultaneously in this paper by laser Doppler velocimeter measurement and numerical analyses with volume of fluid approach coupled with a large eddy simulation turbulent model.The general agreement of mean velocities between numerical predictions and experimental results in self-similar region is good for two cases:Reynolds numbers 2090 and 2970,which correspond to the stable impinging jet and flapping jet.Results show that the flapping jet is a new flow pattern for submerged turbulent plane jets with characteristic flapping frequency,and that the decay of the mean velocity along the jet centerline is considerably faster than that of the stable impinging state.
基金Project supported by the Hongkong SAR Government under the RGC (Grant No. 6165/98E)the RIG (Grant No. R195/96.EG15)supported by the HKUST (Grant No. 6254/02E).
文摘The velocities of boundary layer flows between two parallel oscillating plates separated by small distance, i.e., in so called narrow channel, were theoretically and experimentally studied. The focus was on the laminar case where the Reynolds number ReA is much smaller than the transition value. The theoretical analysis of the Stokes layer in oscillating flow over a narrow channel was made first. Then Laser Doppler Velocimeter (LDV) was employed to measure the Stokes boundary layer above an oscillating flat plate and inside the oscillating narrow channel at various ReH numbers. At the same time, the phase angle difference along the vertical direction in both analysis and experiment were provided. The good agreements are shown between the measured results and the theoretical solution.
基金the 21~(st)Century COE program of Pulse Power Science of Kumamoto University
文摘Recently, development of high technology has been required for the formation of thin uniform film in manufacturing processes of semiconductor as the semiconductor instruments become more sophisticated. Spin coating is usually used for spreading photoresist on a wafer surface. However, since rotating speed of the disk is very high in spin coating, the dropped photoresist scarers outward and reattaches on the film surface. A catch cup is set up outside the wafer in spin coating, and scattered photoresist mist is removed from the wafer edge by the exhaust flow generated at the gap between the wafer edge and the catch cup. In the dry process of a spin coating, it is a serious concern that the film thickness increases near the wafer edge in the case of low rotating speed. The purpose of this study is to make clear the effect of the catch cup geometry on the 3D boundary layer flow over the wafer surface and the drying rate of liquid film.