TRIP590 advanced high strength steel sheets were heated by laser with different powers.Changes of the microstructure and the hardness of TRIP590 steel under laser heating with different powers were investigated by met...TRIP590 advanced high strength steel sheets were heated by laser with different powers.Changes of the microstructure and the hardness of TRIP590 steel under laser heating with different powers were investigated by metallographic microscope,scanning electron microscope,and hardness tester.The purpose was to study the effect of laser power on microstructure and hardness of TRIP590 steel.It is shown that the power of laser plays an important role on the microstructure and hardness of heated steel sheets.The results are helpful to determine suitable power for the laser auxiliary forming of Trip590 steel in order to obtain uniform microstructure and high hardness.展开更多
In this work, a 532 nm diode CW laser is used to heat samples used as building materials at a 1 meter standoff distance while using an FLIR (Forward-Looking Infrared) thermal camera to monitor and record the heating a...In this work, a 532 nm diode CW laser is used to heat samples used as building materials at a 1 meter standoff distance while using an FLIR (Forward-Looking Infrared) thermal camera to monitor and record the heating and then cooling of each sample after lasers are switched off. The data is then analyzed using FLIR proprietary software. Since the absorption spectra of materials are unique, using multiple lasers of different wavelengths to simultaneously shine onto the sample at different locations would give enough thermal data to successfully characterize the samples within a reasonable amount of time. The results are very promising for applications involving non-destructive detection and classification of materials.展开更多
The brazing of diamond is a promising way to fabricate grinding wheels for efficient machining and precision grinding.This work investigated the feasibility of bonding diamond grits onto Aluminium Alloy 7075(AA7075)su...The brazing of diamond is a promising way to fabricate grinding wheels for efficient machining and precision grinding.This work investigated the feasibility of bonding diamond grits onto Aluminium Alloy 7075(AA7075)substrate with a Ag–Cu–Ti filler alloy via laser fusion brazing.The interfacial microstructures and the strength of the brazed diamond joints were studied.The cross-section of the brazed diamond joint consists of a molten filler alloy layer,a molten pool,a heat effect zone,a columnar crystal zone and an equiaxed crystal zone.Within the interface of the filler alloy/substrate metal,microstructures observed possibly were Ag(s.s),Al(s.s),Tix Al,Al2 Cu and Mg intermetallic compounds.A layer of Ti C with a thickness of about 30–50 nm was found at the bonding interface of the diamond/filler alloy.The averaged peak shear force of the brazed joints was found to be approximately 39.8 N.The abrasion grinding test indicated that the diamond/AA7075 brazed joint was adequate for grinding.However,the pulled-off of grit was found to be the primary failure of this type of brazed joint.This work broadened the brazing diamond technique and the range of applications of brazed diamond wheels for efficient grinding.展开更多
In the previous study of longitudinal spin Seebeck effect(LSSE), the thermal gradient was often generated by inserting the sample between the cool bath and the hot bath. For practical use, this method is too cumbers...In the previous study of longitudinal spin Seebeck effect(LSSE), the thermal gradient was often generated by inserting the sample between the cool bath and the hot bath. For practical use, this method is too cumbersome to be easily integrated into modern electrical circuits. Since the laser can be easily focused into a small region, it will be more convenient and friendly to the integrated circuit. In this paper, we systematically investigate the LSSE and spin Hall magnetoresistance(SMR) of the Pt/Y_3 Fe_5 O_(12) heterostructure under focused laser-heating. We find that the extremely large voltage of inverse spin Hall effect(VISHE) can be obtained by reducing the diameter of laser or increasing the number of light spots.Meanwhile, even under the illumination of the ultraviolet light which will excite the electron from the valence band to the conduction band in yttrium iron garnet(YIG), the magnitude of SMR is nearly constant. It indicates that the spin transport behavior of the adjacent Pt is independent of the electron configuration of YIG. The laser-heating method to generate LSSE will be very promising for modern integrated electronic circuits and will promote the application of spin caloritronics in practice.展开更多
The photo-thermal effect has been hypothesised to be one of the most possible biophysical mecha-nisms for laser-cochlea stimulation. The majority focus on animals like the guinea pig, from which a num-ber of valuable ...The photo-thermal effect has been hypothesised to be one of the most possible biophysical mecha-nisms for laser-cochlea stimulation. The majority focus on animals like the guinea pig, from which a num-ber of valuable results have been gained. However, in light of the increasing need to improve laser safety, it has became necessary to find out whether studies on animals can shed light on safe laser parameters in the human cochlea.展开更多
The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) sol...The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) solution were analyzed by a slow strain rate test. The fracture morphologies and chemical components of corrosive products before and after LHT were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively, and the mechanism of LHT on stress corrosion cracking was discussed. Results showed that the fracture for welded joints was brittle in its original state, while it was transformed to a ductile fracture after LHT. The tendencies of hydrogen-induced corrosion were reduced, and the stress corrosion sensitivity index decreased from 35.2% to 25.3%, indicating that the stress corrosion resistance of X80 pipeline steel welded joints has been improved by LHT.展开更多
Laser-heated diamond-anvil cell (LHDAC) is emerging as the most suitable, economical and versatile tool for the measurement of a large spectrum of physical properties of materials under extreme pressure and temperatur...Laser-heated diamond-anvil cell (LHDAC) is emerging as the most suitable, economical and versatile tool for the measurement of a large spectrum of physical properties of materials under extreme pressure and temperature conditions. In this review, the recent developments in the instrumentation, pressure and temperature measurement techniques, results of experimental investigations from the literature were discussed. Also, the future scope of the technique in various avenues of science was explored.展开更多
Heating rate playsanimportantroleon recrystallizationtextureofcold deformed metals.Inthispaper,thelaser heatingtechnique wasusedtotheultrarapidlyannealingon acold rolledCu 30 mass% Zn alloy. The experimental result...Heating rate playsanimportantroleon recrystallizationtextureofcold deformed metals.Inthispaper,thelaser heatingtechnique wasusedtotheultrarapidlyannealingon acold rolledCu 30 mass% Zn alloy. The experimental resultsshow thatthe texture development differs from those observed in the case of conventional annealing. When primary recrystallization completes,the grainsizeisvery fineandthegrain orientation distributionisalmostrandom . Withthecontinuousgrain growing,the dispersioncharacterofthegrainorientationsstillre mains. The possible mechanismson theevolution of ultrarapid recryctallization texture were discussed.展开更多
Thermal conductivity(k)of iron is measured up to about 134 GPa.The measurements are carried out using the single sided laser heated diamond anvil cell,where the power absorbed by a Fe metal foil at hotspot is calculat...Thermal conductivity(k)of iron is measured up to about 134 GPa.The measurements are carried out using the single sided laser heated diamond anvil cell,where the power absorbed by a Fe metal foil at hotspot is calculated using a novel thermodynamical method.Thermal conductivity of fee(γ)-Fe increases up to a pressure of about46 GPa.We find thermal conductivity values in the range of 70-80 Wm-1K-1(with an uncertainty of 40%),almost constant with pressure,in the hcp(e)phase of Fe.We attribute the pressure independent k above 46 GPa to the strong electronic correlation effects driven by the electronic topological transition(ETT).We predict a value of thermal conductivity ofε-Fe of about 40±16 Wm-1K-1 at the outer core of Earth.展开更多
The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments...The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.展开更多
A plasma is produced in air by using a high-intensity Q-switch Nd:YAG pulsed laser to irradiate a solid target, and the impulses delivering from the plasma to the target are measured at different laser power densitie...A plasma is produced in air by using a high-intensity Q-switch Nd:YAG pulsed laser to irradiate a solid target, and the impulses delivering from the plasma to the target are measured at different laser power densities. Analysing the formation process of laser plasma and the laser supported detonation wave (LSDW) and using fluid mechanics theory and Pirri's methods, an approximately theoretical solution of the impulse delivering from the plasma to the target under our experimental condition is found. Furthermore, according to the formation time of plasma and the variation of pressure in plasma in a non-equilibrium state, a physical model of the interaction between the pulse laser and the solid target is developed. The plasma evolutions with time during and after the laser pulse irradiating the target are simulated numerically by using a three-dimensional difference scheme. And the numerical solutions of the impulse delivering from the plasma to the target are obtained. A comparison among the theoretical, numerical and experimental results and their analyses are performed. The experimental results are explained reasonably. The consistency between numerical results and experimental results implies that the numerical calculation model used in this paper can well describe the mechanical action of the laser on the target.展开更多
In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and m...In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and mechanical properties of the joint were studied. The pros and cons of the joint were identified and evaluated by measuring the tensile shear strength, microhardness and microstructure observation. The formation mechanism of various phases at the Mg/steel interface was analyzed. The results indicated that the galvanized layer could promote the metallurgical bonding between magnesium alloy and steel by improving the diffusion ability of molten magnesium alloy at the steel interface and reacting with Mg, so as to enhance the strength of the joint. A continuous dense layered eutectic structure(α-Mg+MgZn) was formed at the interface of the joint, while MgZn_(2)and MgZn phase was formed at the weld edge zone and heat affective zone(HAZ), whereas no reaction layer was generated between the uncoated steel and magnesium alloy. A sound joint could be obtained at 2.5 kW, and the corresponding tensile shear strength reached the maximum value of 42.9 N/mm. The strength was slightly reduced at 2.6 kW due to the existence of microcracks in the eutectic reaction layer.展开更多
The morphology,size,and distribution of Laves phases have important influences on the mechanical properties of laser-repaired Inconel 718(IN718)superalloy.Due to the deterioration of the substrate zone,the Laves phase...The morphology,size,and distribution of Laves phases have important influences on the mechanical properties of laser-repaired Inconel 718(IN718)superalloy.Due to the deterioration of the substrate zone,the Laves phase in the laser cladding zone of IN718 superalloy cannot be optimized by a hightemperature solution treatment.In this study,an in situ laser heat-treatment method was proposed to regulate the morphology and size of the Laves phase in the laser cladding zone of IN718 superalloy without impacting the substrate zone.In the in situ laser heat-treatment process,a laser was used to heat previously deposited layers with optimized manufacturing parameters.A thermocouple and an infrared camera were used to analyze thermal cycles and real-time temperature fields,respectively.Microstructures and micro-segregations were observed by optical microscopy,scanning electron microscopy,and electron probe microanalysis.It was found that the in situ laser heat treatment effectively changed the morphology and size of the Laves phase,which was transformed from a continuous striplike shape to a discrete granular shape.The effective temperature range and duration were the two main factors influencing the Laves phase during the in situ laser heat-treatment process.The effective temperature range was determined by the laser linear energy density,and the peak temperature increased with the increase of the linear energy density.In addition,the temperature amplitude could be reduced by simultaneously increasing the laser power and the scanning velocity.Finally,a flow diagram was developed based on the in situ laser heat-treatment process,and the deposition of a single-walled sample with fine and granular Laves phases was detected.展开更多
The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the imp...The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the impact of thermal loading with energy dissipation is the focus of this research. To model the thermal boundary condition(in the form of thermal conduction),generalized Cattaneo model(GCM) is employed. In the reference configuration, a nonlinear coupled Lord-Shulman-type generalized thermoelasticity formulation using finite strain theory(FST) is developed and the temperature dependency of the thermal conductivity is considered to derive the equations. In order to solve the time-dependent and nonlinear equations, Newmark’s numerical time integration technique and an updated finite element algorithm is applied and to ensure achieving accurate continuity of the results, the Hermitian elements are used instead of Lagrangian’s. The numerical responses for different factors such as input heat flux and nonlinear terms are expressed graphically and their impacts on the system’s reaction are discussed in detail.The results of the study are presented for Green–Lindsay model and the findings are compared with Lord-Shulman model especially with regards to heat wave propagation. It is shown that the nature of the laser’s thermal shock and its geometry are particularly determinative in the final stage of deformation. The research also concluded that employing FST leads to achieving more accuracy in terms of elastic deformations;however, the thermally nonlinear analysis does not change the results markedly. For this reason, the nonlinear theory of deformation is required in laser related reviews, while it is reasonable to ignore the temperature changes compared to the reference temperature in deriving governing equations.展开更多
This paper Presents experimental data on effect of carbon concentration and laser processing regimes on retained austenite quantity. The data on retained austenite decomposition during subsequent temperings at vario...This paper Presents experimental data on effect of carbon concentration and laser processing regimes on retained austenite quantity. The data on retained austenite decomposition during subsequent temperings at various temperatures as well as after holding at room temperature during 3 years are given.Correla- tion between structural broadening of the X - ray lines of retained gamma - phase and the amount of the latter has been discovered.Mechanisms responsible for the increased quantity of the retained austen- ite in carbon and low alloyed steels after laser hardening are described.展开更多
Laser plays an important role in synthesizing nanometer material. A three-dimensional mathematical model is established in this paper when single pulsed millisecond laser shocks the surface of the metal target at a li...Laser plays an important role in synthesizing nanometer material. A three-dimensional mathematical model is established in this paper when single pulsed millisecond laser shocks the surface of the metal target at a liquid-solid interface. By changing laser power density and target size, the temperature field variation of the metal target is investigated. Results show that the generation process of nanoparticles includes heating, melting and boiloff.展开更多
When laser ablation is subjected to supersonic flow, the influence mechanism of airflow on laser ablation behavior is still unclear. A coupled thermal-fluid-structure model is presented to investigate the influence of...When laser ablation is subjected to supersonic flow, the influence mechanism of airflow on laser ablation behavior is still unclear. A coupled thermal-fluid-structure model is presented to investigate the influence of supersonic airflow on the development of a laser ablation pit. Results show that the aerodynamic convection cooling effect not only reduces the ablation velocity but also changes the symmetry morphology of the ablation pit due to the non-uniform convective heat transfer. Flow mode transition is also observed when the pit becomes deeper, and significant change in flow pattern and heat transfer behavior are found when the open mode is transformed into the closed mode.展开更多
Pentazolate compounds have attracted extensive attention as high energy density materials.The synthesis and recovery of pentazolate compounds is of great importance for their potential applications.Here,we report the ...Pentazolate compounds have attracted extensive attention as high energy density materials.The synthesis and recovery of pentazolate compounds is of great importance for their potential applications.Here,we report the synthesis of Pmn2_(1)-NaN_(5)and Pm-Na_(2)N_(5)through compressing and laser heating pure NaN_(3)at~60 GPa.Upon decompression,the pressureinduced structural transition from Pmn2_(1)-NaN_(5)into Cm-NaN_(5)is observed in the pressure range of 14-23 GPa for the first time.The cyclo-N_(5)^(-)can be traced down to 4.7 GPa at room temperature and recovered to ambient pressure under low temperature condition(up to 160 K).The Pm-Na_(2)N_(5)is suggested to decompose into the P4/mmm-NaN_(2)at 23 GPa,and be stable at ambient conditions.This work provides insight into the high-pressure behaviors of pentazolate compounds and an alternative way to stabilize energetic polynitrogen compounds.展开更多
Phase structure of sputtered Ta coating in the negative glow space and LPH effect were explored.The whole coating/substrate system is substrate→physically gas-absorbed Fe surface→oxygen-enriched TaOx layer→amorphou...Phase structure of sputtered Ta coating in the negative glow space and LPH effect were explored.The whole coating/substrate system is substrate→physically gas-absorbed Fe surface→oxygen-enriched TaOx layer→amorphous Ta→αandβdual phase→singleαphase.After LPH course,micro structure of Ta coating shows intact,only a few cracks emerge after 100 laser pulses,exhibiting thin HAZ but thick Fe/Ta ICZ,without martensitic transformation.For the electrodeposited Cr coating,continuous thermal stresses produce many extra micro-crack,substrate oxidation and martensitic transformation,leading to crack propagations and final bulk delamination,without any ICZ.展开更多
This paper has solved the Chester modified heat conduction equation of the different relaxation time r value under different temperature conditions, different boundary conditions and the different initial conditions b...This paper has solved the Chester modified heat conduction equation of the different relaxation time r value under different temperature conditions, different boundary conditions and the different initial conditions by different means of methods. These solutions can help to obtain temperature field of laser thermal effects.展开更多
基金Supported by the National Natural Science Foundation of China(No.51205004,51475003)Beijing Natural Science Foundation(No.3152010)Beijing Education Committee Science and Technology Program(No.km201510009004)
文摘TRIP590 advanced high strength steel sheets were heated by laser with different powers.Changes of the microstructure and the hardness of TRIP590 steel under laser heating with different powers were investigated by metallographic microscope,scanning electron microscope,and hardness tester.The purpose was to study the effect of laser power on microstructure and hardness of TRIP590 steel.It is shown that the power of laser plays an important role on the microstructure and hardness of heated steel sheets.The results are helpful to determine suitable power for the laser auxiliary forming of Trip590 steel in order to obtain uniform microstructure and high hardness.
文摘In this work, a 532 nm diode CW laser is used to heat samples used as building materials at a 1 meter standoff distance while using an FLIR (Forward-Looking Infrared) thermal camera to monitor and record the heating and then cooling of each sample after lasers are switched off. The data is then analyzed using FLIR proprietary software. Since the absorption spectra of materials are unique, using multiple lasers of different wavelengths to simultaneously shine onto the sample at different locations would give enough thermal data to successfully characterize the samples within a reasonable amount of time. The results are very promising for applications involving non-destructive detection and classification of materials.
基金National Natural Science Foundation of China(Nos.51975221,U1805251 and 51575198)。
文摘The brazing of diamond is a promising way to fabricate grinding wheels for efficient machining and precision grinding.This work investigated the feasibility of bonding diamond grits onto Aluminium Alloy 7075(AA7075)substrate with a Ag–Cu–Ti filler alloy via laser fusion brazing.The interfacial microstructures and the strength of the brazed diamond joints were studied.The cross-section of the brazed diamond joint consists of a molten filler alloy layer,a molten pool,a heat effect zone,a columnar crystal zone and an equiaxed crystal zone.Within the interface of the filler alloy/substrate metal,microstructures observed possibly were Ag(s.s),Al(s.s),Tix Al,Al2 Cu and Mg intermetallic compounds.A layer of Ti C with a thickness of about 30–50 nm was found at the bonding interface of the diamond/filler alloy.The averaged peak shear force of the brazed joints was found to be approximately 39.8 N.The abrasion grinding test indicated that the diamond/AA7075 brazed joint was adequate for grinding.However,the pulled-off of grit was found to be the primary failure of this type of brazed joint.This work broadened the brazing diamond technique and the range of applications of brazed diamond wheels for efficient grinding.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604265,51471134,51572222,and 11704386)the Fundamental Research Funds for the Central Universities,China(Grant Nos.3102018zy044 and 3102017jc01001)
文摘In the previous study of longitudinal spin Seebeck effect(LSSE), the thermal gradient was often generated by inserting the sample between the cool bath and the hot bath. For practical use, this method is too cumbersome to be easily integrated into modern electrical circuits. Since the laser can be easily focused into a small region, it will be more convenient and friendly to the integrated circuit. In this paper, we systematically investigate the LSSE and spin Hall magnetoresistance(SMR) of the Pt/Y_3 Fe_5 O_(12) heterostructure under focused laser-heating. We find that the extremely large voltage of inverse spin Hall effect(VISHE) can be obtained by reducing the diameter of laser or increasing the number of light spots.Meanwhile, even under the illumination of the ultraviolet light which will excite the electron from the valence band to the conduction band in yttrium iron garnet(YIG), the magnitude of SMR is nearly constant. It indicates that the spin transport behavior of the adjacent Pt is independent of the electron configuration of YIG. The laser-heating method to generate LSSE will be very promising for modern integrated electronic circuits and will promote the application of spin caloritronics in practice.
文摘The photo-thermal effect has been hypothesised to be one of the most possible biophysical mecha-nisms for laser-cochlea stimulation. The majority focus on animals like the guinea pig, from which a num-ber of valuable results have been gained. However, in light of the increasing need to improve laser safety, it has became necessary to find out whether studies on animals can shed light on safe laser parameters in the human cochlea.
基金financially supported by the Chief Expert (Engineer) Project of Jiangsu Provincial Association for Science (No. 2012-09)
文摘The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) solution were analyzed by a slow strain rate test. The fracture morphologies and chemical components of corrosive products before and after LHT were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively, and the mechanism of LHT on stress corrosion cracking was discussed. Results showed that the fracture for welded joints was brittle in its original state, while it was transformed to a ductile fracture after LHT. The tendencies of hydrogen-induced corrosion were reduced, and the stress corrosion sensitivity index decreased from 35.2% to 25.3%, indicating that the stress corrosion resistance of X80 pipeline steel welded joints has been improved by LHT.
文摘Laser-heated diamond-anvil cell (LHDAC) is emerging as the most suitable, economical and versatile tool for the measurement of a large spectrum of physical properties of materials under extreme pressure and temperature conditions. In this review, the recent developments in the instrumentation, pressure and temperature measurement techniques, results of experimental investigations from the literature were discussed. Also, the future scope of the technique in various avenues of science was explored.
文摘Heating rate playsanimportantroleon recrystallizationtextureofcold deformed metals.Inthispaper,thelaser heatingtechnique wasusedtotheultrarapidlyannealingon acold rolledCu 30 mass% Zn alloy. The experimental resultsshow thatthe texture development differs from those observed in the case of conventional annealing. When primary recrystallization completes,the grainsizeisvery fineandthegrain orientation distributionisalmostrandom . Withthecontinuousgrain growing,the dispersioncharacterofthegrainorientationsstillre mains. The possible mechanismson theevolution of ultrarapid recryctallization texture were discussed.
基金Ministry of Earth Sciences,Government of India for financial support under the project grant no.MoES/16/25/10-RDEASDST,INSPIRE program by Department of Science and Technology,Government of India for financial support。
文摘Thermal conductivity(k)of iron is measured up to about 134 GPa.The measurements are carried out using the single sided laser heated diamond anvil cell,where the power absorbed by a Fe metal foil at hotspot is calculated using a novel thermodynamical method.Thermal conductivity of fee(γ)-Fe increases up to a pressure of about46 GPa.We find thermal conductivity values in the range of 70-80 Wm-1K-1(with an uncertainty of 40%),almost constant with pressure,in the hcp(e)phase of Fe.We attribute the pressure independent k above 46 GPa to the strong electronic correlation effects driven by the electronic topological transition(ETT).We predict a value of thermal conductivity ofε-Fe of about 40±16 Wm-1K-1 at the outer core of Earth.
基金Project(CXLX14-1098)supported by Jiangsu Province Postgraduate Scientific Research Innovation Program,China
文摘The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.
基金Project supported by the National Natural Science Foundation of China (Grant No 60578015)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20050288025)the Foundation of the Ministry of Education of China for Outstanding Young Teachers in University (2003-2008)
文摘A plasma is produced in air by using a high-intensity Q-switch Nd:YAG pulsed laser to irradiate a solid target, and the impulses delivering from the plasma to the target are measured at different laser power densities. Analysing the formation process of laser plasma and the laser supported detonation wave (LSDW) and using fluid mechanics theory and Pirri's methods, an approximately theoretical solution of the impulse delivering from the plasma to the target under our experimental condition is found. Furthermore, according to the formation time of plasma and the variation of pressure in plasma in a non-equilibrium state, a physical model of the interaction between the pulse laser and the solid target is developed. The plasma evolutions with time during and after the laser pulse irradiating the target are simulated numerically by using a three-dimensional difference scheme. And the numerical solutions of the impulse delivering from the plasma to the target are obtained. A comparison among the theoretical, numerical and experimental results and their analyses are performed. The experimental results are explained reasonably. The consistency between numerical results and experimental results implies that the numerical calculation model used in this paper can well describe the mechanical action of the laser on the target.
基金Projects(51705219, 51905227) supported by the National Natural Science Foundation of ChinaProject(BK20200915) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(19KJB460013) supported by the General University Science Research Project of Jiangsu Province,China。
文摘In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and mechanical properties of the joint were studied. The pros and cons of the joint were identified and evaluated by measuring the tensile shear strength, microhardness and microstructure observation. The formation mechanism of various phases at the Mg/steel interface was analyzed. The results indicated that the galvanized layer could promote the metallurgical bonding between magnesium alloy and steel by improving the diffusion ability of molten magnesium alloy at the steel interface and reacting with Mg, so as to enhance the strength of the joint. A continuous dense layered eutectic structure(α-Mg+MgZn) was formed at the interface of the joint, while MgZn_(2)and MgZn phase was formed at the weld edge zone and heat affective zone(HAZ), whereas no reaction layer was generated between the uncoated steel and magnesium alloy. A sound joint could be obtained at 2.5 kW, and the corresponding tensile shear strength reached the maximum value of 42.9 N/mm. The strength was slightly reduced at 2.6 kW due to the existence of microcracks in the eutectic reaction layer.
基金supported by Aero Engine Corporation of China Xi’an Aero-Engine Ltd.(N2018KD040252)the fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University(2020-TS-03)。
文摘The morphology,size,and distribution of Laves phases have important influences on the mechanical properties of laser-repaired Inconel 718(IN718)superalloy.Due to the deterioration of the substrate zone,the Laves phase in the laser cladding zone of IN718 superalloy cannot be optimized by a hightemperature solution treatment.In this study,an in situ laser heat-treatment method was proposed to regulate the morphology and size of the Laves phase in the laser cladding zone of IN718 superalloy without impacting the substrate zone.In the in situ laser heat-treatment process,a laser was used to heat previously deposited layers with optimized manufacturing parameters.A thermocouple and an infrared camera were used to analyze thermal cycles and real-time temperature fields,respectively.Microstructures and micro-segregations were observed by optical microscopy,scanning electron microscopy,and electron probe microanalysis.It was found that the in situ laser heat treatment effectively changed the morphology and size of the Laves phase,which was transformed from a continuous striplike shape to a discrete granular shape.The effective temperature range and duration were the two main factors influencing the Laves phase during the in situ laser heat-treatment process.The effective temperature range was determined by the laser linear energy density,and the peak temperature increased with the increase of the linear energy density.In addition,the temperature amplitude could be reduced by simultaneously increasing the laser power and the scanning velocity.Finally,a flow diagram was developed based on the in situ laser heat-treatment process,and the deposition of a single-walled sample with fine and granular Laves phases was detected.
文摘The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the impact of thermal loading with energy dissipation is the focus of this research. To model the thermal boundary condition(in the form of thermal conduction),generalized Cattaneo model(GCM) is employed. In the reference configuration, a nonlinear coupled Lord-Shulman-type generalized thermoelasticity formulation using finite strain theory(FST) is developed and the temperature dependency of the thermal conductivity is considered to derive the equations. In order to solve the time-dependent and nonlinear equations, Newmark’s numerical time integration technique and an updated finite element algorithm is applied and to ensure achieving accurate continuity of the results, the Hermitian elements are used instead of Lagrangian’s. The numerical responses for different factors such as input heat flux and nonlinear terms are expressed graphically and their impacts on the system’s reaction are discussed in detail.The results of the study are presented for Green–Lindsay model and the findings are compared with Lord-Shulman model especially with regards to heat wave propagation. It is shown that the nature of the laser’s thermal shock and its geometry are particularly determinative in the final stage of deformation. The research also concluded that employing FST leads to achieving more accuracy in terms of elastic deformations;however, the thermally nonlinear analysis does not change the results markedly. For this reason, the nonlinear theory of deformation is required in laser related reviews, while it is reasonable to ignore the temperature changes compared to the reference temperature in deriving governing equations.
文摘This paper Presents experimental data on effect of carbon concentration and laser processing regimes on retained austenite quantity. The data on retained austenite decomposition during subsequent temperings at various temperatures as well as after holding at room temperature during 3 years are given.Correla- tion between structural broadening of the X - ray lines of retained gamma - phase and the amount of the latter has been discovered.Mechanisms responsible for the increased quantity of the retained austen- ite in carbon and low alloyed steels after laser hardening are described.
基金Supported by National Natural Science Foundation of China(No.50902103)
文摘Laser plays an important role in synthesizing nanometer material. A three-dimensional mathematical model is established in this paper when single pulsed millisecond laser shocks the surface of the metal target at a liquid-solid interface. By changing laser power density and target size, the temperature field variation of the metal target is investigated. Results show that the generation process of nanoparticles includes heating, melting and boiloff.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11332011 and 11472276the Project of the Chinese Academy of Sciences,and the Defense Industrial Technology Development Program
文摘When laser ablation is subjected to supersonic flow, the influence mechanism of airflow on laser ablation behavior is still unclear. A coupled thermal-fluid-structure model is presented to investigate the influence of supersonic airflow on the development of a laser ablation pit. Results show that the aerodynamic convection cooling effect not only reduces the ablation velocity but also changes the symmetry morphology of the ablation pit due to the non-uniform convective heat transfer. Flow mode transition is also observed when the pit becomes deeper, and significant change in flow pattern and heat transfer behavior are found when the open mode is transformed into the closed mode.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFA0305900)the National Nat-ural Science Foundation of China(Grant Nos.12174143,11634004,11847094,and 11804384)JLU Science and Technology Innovative Research Team(Grant No.2017TD-01)。
文摘Pentazolate compounds have attracted extensive attention as high energy density materials.The synthesis and recovery of pentazolate compounds is of great importance for their potential applications.Here,we report the synthesis of Pmn2_(1)-NaN_(5)and Pm-Na_(2)N_(5)through compressing and laser heating pure NaN_(3)at~60 GPa.Upon decompression,the pressureinduced structural transition from Pmn2_(1)-NaN_(5)into Cm-NaN_(5)is observed in the pressure range of 14-23 GPa for the first time.The cyclo-N_(5)^(-)can be traced down to 4.7 GPa at room temperature and recovered to ambient pressure under low temperature condition(up to 160 K).The Pm-Na_(2)N_(5)is suggested to decompose into the P4/mmm-NaN_(2)at 23 GPa,and be stable at ambient conditions.This work provides insight into the high-pressure behaviors of pentazolate compounds and an alternative way to stabilize energetic polynitrogen compounds.
基金financial support of the project from the National Natural Science Foundation of China(No.51701223)。
文摘Phase structure of sputtered Ta coating in the negative glow space and LPH effect were explored.The whole coating/substrate system is substrate→physically gas-absorbed Fe surface→oxygen-enriched TaOx layer→amorphous Ta→αandβdual phase→singleαphase.After LPH course,micro structure of Ta coating shows intact,only a few cracks emerge after 100 laser pulses,exhibiting thin HAZ but thick Fe/Ta ICZ,without martensitic transformation.For the electrodeposited Cr coating,continuous thermal stresses produce many extra micro-crack,substrate oxidation and martensitic transformation,leading to crack propagations and final bulk delamination,without any ICZ.
基金This work was supported by the National Natural Science Foundation of China(No.60068001)and the Natural Science Foundation of Yunnan Province(No.2000A0021M)and ESF of Yunnan(No.0111054).
文摘This paper has solved the Chester modified heat conduction equation of the different relaxation time r value under different temperature conditions, different boundary conditions and the different initial conditions by different means of methods. These solutions can help to obtain temperature field of laser thermal effects.