Lateral oxidation in vertical cavity surface emitting lasers (VCSELs) is described,and its characteristics are investigated.A linear growth law is found for stripe mesas. However, oxide growth (above 435℃ ) follo...Lateral oxidation in vertical cavity surface emitting lasers (VCSELs) is described,and its characteristics are investigated.A linear growth law is found for stripe mesas. However, oxide growth (above 435℃ ) follows a nonlinear law for the two geometry mesa structures which we employ in VCSEL. Theoretical analysis indicates that mesa structure geometry influences oxide growth rate at higher temperatures.展开更多
High slope efficiency and high power selected oxide-confined 850nm VCSELs grown by MOCVD are reported.The slope efficiency and the threshold current respectively are 0 82mW/mA and 2 59mA with a 9μm diameter oxidati...High slope efficiency and high power selected oxide-confined 850nm VCSELs grown by MOCVD are reported.The slope efficiency and the threshold current respectively are 0 82mW/mA and 2 59mA with a 9μm diameter oxidation aperture at 25℃.The maximum power of 16mW is obtained at 23mA current bias.The minimum threshold current can be as low as 570μA with a 5μm diameter oxidation aperture at 25℃.The maximum saturated power is 5 5mW.展开更多
Interference filter-stabilized external cavity diode lasers (ECDLs) have properties of simple configurations, high sta- bilities, and narrow linewidths. However, the interference filter used in common ECDL designs r...Interference filter-stabilized external cavity diode lasers (ECDLs) have properties of simple configurations, high sta- bilities, and narrow linewidths. However, the interference filter used in common ECDL designs requires an ultra-narrow bandwidth (about 0.3 nm) to achieve mode selection, that is considerably expensive and not yet available for a wide range of wavelengths. In this paper, a robust ECDL using an available broad bandwidth (about 4 nm) interference filter as the wavelength discriminator is constructed and tested. The ECDL demonstrated a narrow Lorentzian fitted linewidth of 95 kHz and a spectral purity of 2.9 MHz. The long-term frequency stability of the ECDL reaches 5.59 x 10 12.展开更多
We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity la...We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity laser are detected. The laser output power of dual-wavelength bad cavity laser is measured when changing the 455 nm pumping laser frequency and power at 127℃ Cs cell temperature. Both the 1359 nm laser and the 1470 nm laser are working at the deep bad cavity regime, and the ratio between the linewidth of cavity mode and the laser gain bandwidth a ≈ 40 for 1359nm and 1470nm lasers. The 147Ohm laser linewidth is measured to be 407.3Hz. The dual-wavelength bad cavity laser operating on atomic transitions demonstrated here has a potential in the application as a stable optical local oscillator, even an active optical frequency standard directly in the future.展开更多
Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. Th...Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. The conventional cavity detection methods and their limitation were analyzed. Those methods cannot form 3D model of underground cavity which is used for instructing the cavity disposal; and their precisions in detection are always greatly affected by the geological circumstance. The importance of 3D cavity detection in metal mine for safe exploitation was pointed out; and the 3D cavity laser detection method and its principle were introduced. A cavity auto scanning laser system was recommended to actualize the cavity 3D detection after comparing with the other laser detection systems. Four boreholes were chosen to verify the validity of the cavity auto scanning laser system. The results show that the cavity auto scanning laser system is very suitable for underground 3D cavity detection, especially for those inaccessible ones.展开更多
Room temperature low threshold lasing of green GaNbased vertical cavity surface emitting laser(VCSEL)was demonstrated under continuous wave(CW)operation.By using self-formed InGaN quantum dots(QDs)as the active region...Room temperature low threshold lasing of green GaNbased vertical cavity surface emitting laser(VCSEL)was demonstrated under continuous wave(CW)operation.By using self-formed InGaN quantum dots(QDs)as the active region,the VCSEL emitting at 524.0 nm has a threshold current density of 51.97 A cm^(-2),the lowest ever reported.The QD epitaxial wafer featured with a high IQE of 69.94%and theδ-function-like density of states plays an important role in achieving low threshold current.Besides,a short cavity of the device(~4.0λ)is vital to enhance the spontaneous emission coupling factor to 0.094,increase the gain coefficient factor,and decrease the optical loss.To improve heat dissipation,AlN layer was used as the current confinement layer and electroplated copper plate was used to replace metal bonding.The results provide important guidance to achieving high performance GaN-based VCSELs.展开更多
A broadband tunable grating-coupled external cavity laser is realized by employing a self-assembled InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) as the gain device. The SLD device is processed with a be...A broadband tunable grating-coupled external cavity laser is realized by employing a self-assembled InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) as the gain device. The SLD device is processed with a bent-waveguide structure and facet antireflection (AR) coating. Tuning bandwidths of 106 nm and 117 nm are achieved under a-A and 3.5-A injection currents, respectively. The large tuning range originates essentially from the broad gain spectrum of self-assembled QDs. The bent waveguide structure combined with the facet AR coating plays a role in suppressing the inner-cavity lasing under a large injection current.展开更多
The performances of high power Er/Yb codoped fiber linear cavity lasers are investigated numerically. The numerical analysis is based on the iterative solution of rate equations for population density of the Er/Yb ion...The performances of high power Er/Yb codoped fiber linear cavity lasers are investigated numerically. The numerical analysis is based on the iterative solution of rate equations for population density of the Er/Yb ions. The behaviors of co-pump and counter-pump methods are contrasted. Dependence of output power on input pump power, output reflectivity, operating wavelength and active fiber length is simulated, respectively. High conversion efficiency Er/Yb laser output is obtained in simulations and experiments.展开更多
A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740-855 nm is obtai...A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740-855 nm is obtained. At an incident pump energy of 774mJ, the maximum output energy of 104mJ at 790nm with a pulse width of 100μs is achieved at a repetition rate of 5 Hz. To the best of our knowledge, it is the highest pulse energy at 790 nm with pulse width of hundred micro-seconds for an all-solid-state laser. The linewidth of output is 0.5 nm, and the beam quality factor M2 is 1.16. The high-pulse-energy high-beam-quality tunable Ti:sapphire laser in the range of 740-855 nm can be used to establish a more accurate and consistent absolute scale of second-order optical-nonlinear coefficients for KBe2BO3F2 measured in a wider wavelength range and to assess Miller's rule quantitatively.展开更多
A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several param...A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several parameters including inter-element spacing, scales, injected current density and substrate temperature are considered. The actual temperatures obtained through experiment are in excellent agreement with the calculated results, which proves the accuracy of the model. Due to the serious thermal problem, it is essential to design arrays of low self-heating. The analysis can provide a foundation for designing VCSEL arrays in the future.展开更多
A wide wavelength tuning range and single-mode hybrid cavity laser consists of a square Whispering-Gallery(WG)microcavity and a Fabry–Pérot(FP)was introduced and demonstrated.A wavelength tuning range over 12.5 ...A wide wavelength tuning range and single-mode hybrid cavity laser consists of a square Whispering-Gallery(WG)microcavity and a Fabry–Pérot(FP)was introduced and demonstrated.A wavelength tuning range over 12.5 nm from 1760.87 to 1773.39 nm which was single-mode emitting was obtained with the side-mode suppression ratio over 30 dB.The hybrid cavity laser does not need grating etching and special epitaxial structure,which reduces the fabrication difficulty and cost,and shows the potential for gas sensing with absorption lines in this range.展开更多
A 1550-nm linearly tunable continuous wave (CW) single-mode external cavity diode laser (ECDL) based on a singlecavity all-dielectric thin-film Fabry-Pérot filter (s-AFPF) is proposed and realized in this p...A 1550-nm linearly tunable continuous wave (CW) single-mode external cavity diode laser (ECDL) based on a singlecavity all-dielectric thin-film Fabry-Pérot filter (s-AFPF) is proposed and realized in this paper. Its internal optical components as well as their operation mechanisms are introduced first, and then its longitudinal mode output characteristic is theoretically analyzed. Afterwards, we set up the experimental platform for the output characteristic measurement of this tunable ECDL; under different experimental conditions, we execute accurate and real-time measurements for the output central wavelength, output optical power, output longitudinal mode distribution, and the line-width of the tunable ECDL in its tuning process. By summing up the optimal experimental condition from the measured data, we obtain the optimal tunable ECDL relevant parameters: the tunable ECDL has a linear mode-hop-free wavelength tuning region of 1547.203 nm-1552.426 nm, a stable output optical power in the range of 40 μW-50 μW, and a stable output longitudinal mode distribution of a single longitudinal mode with a line-width in the range of 100 MHz-150 MHz. This tunable ECDL can be used in environmental gas monitoring, atomic and molecular laser spectroscopy research, precise measurements, and so on.展开更多
Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is es...Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is established to simulate the far-field profile of the coherent arrays. Some important conclusions are obtained. To achieve a higher quality beam, it is necessary to decrease separation between elements, or to increase the element width. Higher brightness can be achieved in the array with larger scale. Emitted wavelength also has an influence on the far-field profile. These analyses can be extended to the future design of coherent vertical cavity surface emitting laser arrays.展开更多
It is important to determine quantitatively the internal carrier loss arising from heating and barrier height variation in a vertical-cavity surface-emitting quantum well laser (VCSEL). However, it is generally diff...It is important to determine quantitatively the internal carrier loss arising from heating and barrier height variation in a vertical-cavity surface-emitting quantum well laser (VCSEL). However, it is generally difficult to realize this goal using purely theoretical formulas due to difficulty h, deriving the parameters relat^i~g to the quantum well structure. In this paper, we describe an efl:icient approach to characterizing and calculating the carrier loss due to the heating and the barrier height change in the VCSEL. In the method, the thermal carrier loss mechanism is combined with gain measurement and calculation. The carrier loss is re-characterized in a calculable form by constructing the threshold current and gain detuning-related loss current using the measured gain data and then substituting them for the quantum well-related parameters in the formula. The result can be expressed as a product of an exponential weight factor linked to the barrier height change and the difference between the threshold current and gain detuning-related loss current. The gain variation at cavity frequency due to thermal carrier loss and gain detuning processes is measured by using an AllnGaAs-AIGaAs VCSEL structure. This work provides a useful approach to analysing threshold and loss properties of the VCSEL, particularly, gain offset design for high temperature operation of VCSELs.展开更多
The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the tr...The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the transverse mode and polarization of VCSEL efficiently.We analyze the far field divergence angle,and birefringence of elliptical hole PC VCSEL.When the ratio of minor axis to major axis b/a = 0.7,the PC VCSEL can obtain single mode and polarization.According to the simulation results,we fabricate the device successfully.The output power is 1.7 mW,the far field divergence angle is less than 10°,and the side mode suppression ratio is over 30 dB.The output power in the Y direction is 20 times that in the X direction.展开更多
Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences amo...Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1×2 implant defined VCSEL arrays for optimum beam steering performance. Electroni- cally controlled beam steering with a maximum deflection angle of 1.6° is successfully achieved in the 1 × 2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.展开更多
An external cavity quantum cascade laser (QCL) array with a wide tuning range and high output power is pre- sented. The coherent QCL array combined with a diffraction grating and gold mirror is tuned in the Littrow ...An external cavity quantum cascade laser (QCL) array with a wide tuning range and high output power is pre- sented. The coherent QCL array combined with a diffraction grating and gold mirror is tuned in the Littrow configuration. Taking advantage of the single-lobed fundamental supermode far-field pattern, the tuning capa- bility of 30.6cm-1 is achieved with a fixed injected current of 3.5 A at room temperature. Single-mode emission can be observed in the entire process. The maximum single-mode output power of the external cavity setup is as high as 25mW and is essential in real applications.展开更多
In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer functio...In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer function. The function is based on the rate equations describing the carrier dynamics at different energy levels of dot and injector well. Although the frequency modulation response component associated with carrier dynamics in wetting layer(WL) and at excited state(ES) levels of dots limits the total bandwidth in conventional QD-VCSEL, our study shows that it can be compensated for by electron tunneling from the injector well into the dot in TIQD structure. Carrier back tunneling time is one of the most important parameters, and by increment of that, the bias current dependence of the total bandwidth will be insignificant. It is proved that at high bias current, the limitation of the WL-ES level plays an important role in reducing the total bandwidth and results in rollovers on 3-d B bandwidth-I curves. In such a way, for smaller air hole diameter of photonic crystal, the effect of this reduction is stronger.展开更多
The wet oxidation of AlGaAs with high Al content in a distributed Bragg reflectors (DBR) is studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Some voids distribute along t...The wet oxidation of AlGaAs with high Al content in a distributed Bragg reflectors (DBR) is studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Some voids distribute along the oxide/GaAs interfaces due to the stress induced by the wet oxidation of the AlGaAs layers. These voids decrease the shrinkage of the Al2O3 layers to 8% instead of the theoretical 20% when compared to the unoxidized AlGaAs layers. With the extension of oxidation time, the reactants are more completely transported to the front interface and the products are more completely transported out along the porous interfaces. As a result,the oxide quality is better.展开更多
A self-seeded fiber laser incorporated with a fiber Bragg grating external cavity semiconductor laser (FBG-ECL) and a Mach-Zehnder interferometer (MZI) were reported in this paper. The MZI provided a Q-switching with ...A self-seeded fiber laser incorporated with a fiber Bragg grating external cavity semiconductor laser (FBG-ECL) and a Mach-Zehnder interferometer (MZI) were reported in this paper. The MZI provided a Q-switching with response time in the order of micro-seconds. The FBG-ECL provided narrow pulses as seeds to shorten the Q-switched pulses. Experimentally, pulse width of 0.8 μs was measured, which was one fifth of the pulse width without self-seeding.展开更多
文摘Lateral oxidation in vertical cavity surface emitting lasers (VCSELs) is described,and its characteristics are investigated.A linear growth law is found for stripe mesas. However, oxide growth (above 435℃ ) follows a nonlinear law for the two geometry mesa structures which we employ in VCSEL. Theoretical analysis indicates that mesa structure geometry influences oxide growth rate at higher temperatures.
文摘High slope efficiency and high power selected oxide-confined 850nm VCSELs grown by MOCVD are reported.The slope efficiency and the threshold current respectively are 0 82mW/mA and 2 59mA with a 9μm diameter oxidation aperture at 25℃.The maximum power of 16mW is obtained at 23mA current bias.The minimum threshold current can be as low as 570μA with a 5μm diameter oxidation aperture at 25℃.The maximum saturated power is 5 5mW.
基金Project supported by the Foundation of Based Technology of China(Grant No.YXBGD20151JL01)the National Natural Science Foundation of China(Grant Nos.61376049,61604007,11674016,61378058,61575008,and 61574011)+1 种基金the Natural Science Foundation of Beijing City,China(Grant Nos.4172009 and4152003)the Beijing Municipal Commission of Education of China(Grant Nos.PXM2017 014204 500034 and PXM2016 014204 500018)
文摘Interference filter-stabilized external cavity diode lasers (ECDLs) have properties of simple configurations, high sta- bilities, and narrow linewidths. However, the interference filter used in common ECDL designs requires an ultra-narrow bandwidth (about 0.3 nm) to achieve mode selection, that is considerably expensive and not yet available for a wide range of wavelengths. In this paper, a robust ECDL using an available broad bandwidth (about 4 nm) interference filter as the wavelength discriminator is constructed and tested. The ECDL demonstrated a narrow Lorentzian fitted linewidth of 95 kHz and a spectral purity of 2.9 MHz. The long-term frequency stability of the ECDL reaches 5.59 x 10 12.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10874009,11074011 and 91436210the International Science and Technology Cooperation Program of China under Grant No 2010DFR10900
文摘We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity laser are detected. The laser output power of dual-wavelength bad cavity laser is measured when changing the 455 nm pumping laser frequency and power at 127℃ Cs cell temperature. Both the 1359 nm laser and the 1470 nm laser are working at the deep bad cavity regime, and the ratio between the linewidth of cavity mode and the laser gain bandwidth a ≈ 40 for 1359nm and 1470nm lasers. The 147Ohm laser linewidth is measured to be 407.3Hz. The dual-wavelength bad cavity laser operating on atomic transitions demonstrated here has a potential in the application as a stable optical local oscillator, even an active optical frequency standard directly in the future.
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. The conventional cavity detection methods and their limitation were analyzed. Those methods cannot form 3D model of underground cavity which is used for instructing the cavity disposal; and their precisions in detection are always greatly affected by the geological circumstance. The importance of 3D cavity detection in metal mine for safe exploitation was pointed out; and the 3D cavity laser detection method and its principle were introduced. A cavity auto scanning laser system was recommended to actualize the cavity 3D detection after comparing with the other laser detection systems. Four boreholes were chosen to verify the validity of the cavity auto scanning laser system. The results show that the cavity auto scanning laser system is very suitable for underground 3D cavity detection, especially for those inaccessible ones.
基金This work was supported by the National Natural Science Foundation of China(Nos.U21A20493,62104204,and 62234011)the National Key Research and Development Program of China(No.2017YFE0131500)the President’s Foundation of Xiamen University(No.20720220108).
文摘Room temperature low threshold lasing of green GaNbased vertical cavity surface emitting laser(VCSEL)was demonstrated under continuous wave(CW)operation.By using self-formed InGaN quantum dots(QDs)as the active region,the VCSEL emitting at 524.0 nm has a threshold current density of 51.97 A cm^(-2),the lowest ever reported.The QD epitaxial wafer featured with a high IQE of 69.94%and theδ-function-like density of states plays an important role in achieving low threshold current.Besides,a short cavity of the device(~4.0λ)is vital to enhance the spontaneous emission coupling factor to 0.094,increase the gain coefficient factor,and decrease the optical loss.To improve heat dissipation,AlN layer was used as the current confinement layer and electroplated copper plate was used to replace metal bonding.The results provide important guidance to achieving high performance GaN-based VCSELs.
基金Project supported by the National Key Basic Research and Development Program of China (Grant No. 2006CB604904)the National Natural Science Foundation of China (Grant Nos. 60976057, 60876086, 60776037, and 10775106)
文摘A broadband tunable grating-coupled external cavity laser is realized by employing a self-assembled InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) as the gain device. The SLD device is processed with a bent-waveguide structure and facet antireflection (AR) coating. Tuning bandwidths of 106 nm and 117 nm are achieved under a-A and 3.5-A injection currents, respectively. The large tuning range originates essentially from the broad gain spectrum of self-assembled QDs. The bent waveguide structure combined with the facet AR coating plays a role in suppressing the inner-cavity lasing under a large injection current.
基金National Natural Science Foundation of China ( 60137010 ) Tianjin Key Project Foundation of China(033183611)
文摘The performances of high power Er/Yb codoped fiber linear cavity lasers are investigated numerically. The numerical analysis is based on the iterative solution of rate equations for population density of the Er/Yb ions. The behaviors of co-pump and counter-pump methods are contrasted. Dependence of output power on input pump power, output reflectivity, operating wavelength and active fiber length is simulated, respectively. High conversion efficiency Er/Yb laser output is obtained in simulations and experiments.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61275157 and 61475040the National Key Scientific Instrument and Equipment Development,Project under Grant No 2012YQ120048+1 种基金the National Development Project for Major Scientific Research Facility under Grant No ZDYZ2012-2the National Key Research and Development Program of China under Grant No 2016YFB0402003
文摘A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740-855 nm is obtained. At an incident pump energy of 774mJ, the maximum output energy of 104mJ at 790nm with a pulse width of 100μs is achieved at a repetition rate of 5 Hz. To the best of our knowledge, it is the highest pulse energy at 790 nm with pulse width of hundred micro-seconds for an all-solid-state laser. The linewidth of output is 0.5 nm, and the beam quality factor M2 is 1.16. The high-pulse-energy high-beam-quality tunable Ti:sapphire laser in the range of 740-855 nm can be used to establish a more accurate and consistent absolute scale of second-order optical-nonlinear coefficients for KBe2BO3F2 measured in a wider wavelength range and to assess Miller's rule quantitatively.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61376049,61076044,61107026,61204011and U1037602the Natural Science Foundation of Beijing under Grant Nos 4132006,4102003,and 4112006+1 种基金the Scientific Research Fund Project of Municipal Education Commission of Beijing under Grant No KM201210005004the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20121103110018
文摘A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several parameters including inter-element spacing, scales, injected current density and substrate temperature are considered. The actual temperatures obtained through experiment are in excellent agreement with the calculated results, which proves the accuracy of the model. Due to the serious thermal problem, it is essential to design arrays of low self-heating. The analysis can provide a foundation for designing VCSEL arrays in the future.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2018YFA0209001)the Key Project of Frontier Science Research Project of CAS(Grant No.QYZDY-SSW-JSC021)the Strategic Priority Research Program of CAS(Grant No.XDB43020202).
文摘A wide wavelength tuning range and single-mode hybrid cavity laser consists of a square Whispering-Gallery(WG)microcavity and a Fabry–Pérot(FP)was introduced and demonstrated.A wavelength tuning range over 12.5 nm from 1760.87 to 1773.39 nm which was single-mode emitting was obtained with the side-mode suppression ratio over 30 dB.The hybrid cavity laser does not need grating etching and special epitaxial structure,which reduces the fabrication difficulty and cost,and shows the potential for gas sensing with absorption lines in this range.
基金the Key Laboratory of Functional Crystals and Laser Technology,Chinese Academy of Sciences(Grant No.JTJG201109)the Guangdong Province&Chinese Academy of Sciences Comprehensive Strategic Cooperation Project(Grant No.2010A090100014)the 2009 Technology Research and Development Fund of Shenzhen,China(Grant No.O702011001)
文摘A 1550-nm linearly tunable continuous wave (CW) single-mode external cavity diode laser (ECDL) based on a singlecavity all-dielectric thin-film Fabry-Pérot filter (s-AFPF) is proposed and realized in this paper. Its internal optical components as well as their operation mechanisms are introduced first, and then its longitudinal mode output characteristic is theoretically analyzed. Afterwards, we set up the experimental platform for the output characteristic measurement of this tunable ECDL; under different experimental conditions, we execute accurate and real-time measurements for the output central wavelength, output optical power, output longitudinal mode distribution, and the line-width of the tunable ECDL in its tuning process. By summing up the optimal experimental condition from the measured data, we obtain the optimal tunable ECDL relevant parameters: the tunable ECDL has a linear mode-hop-free wavelength tuning region of 1547.203 nm-1552.426 nm, a stable output optical power in the range of 40 μW-50 μW, and a stable output longitudinal mode distribution of a single longitudinal mode with a line-width in the range of 100 MHz-150 MHz. This tunable ECDL can be used in environmental gas monitoring, atomic and molecular laser spectroscopy research, precise measurements, and so on.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61376049,61076044,61107026 and 61204011the Scientific Research Fund Project of Municipal Education Commission of Beijing under Grant No PXM2014-014204-07-000018
文摘Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is established to simulate the far-field profile of the coherent arrays. Some important conclusions are obtained. To achieve a higher quality beam, it is necessary to decrease separation between elements, or to increase the element width. Higher brightness can be achieved in the array with larger scale. Emitted wavelength also has an influence on the far-field profile. These analyses can be extended to the future design of coherent vertical cavity surface emitting laser arrays.
文摘It is important to determine quantitatively the internal carrier loss arising from heating and barrier height variation in a vertical-cavity surface-emitting quantum well laser (VCSEL). However, it is generally difficult to realize this goal using purely theoretical formulas due to difficulty h, deriving the parameters relat^i~g to the quantum well structure. In this paper, we describe an efl:icient approach to characterizing and calculating the carrier loss due to the heating and the barrier height change in the VCSEL. In the method, the thermal carrier loss mechanism is combined with gain measurement and calculation. The carrier loss is re-characterized in a calculable form by constructing the threshold current and gain detuning-related loss current using the measured gain data and then substituting them for the quantum well-related parameters in the formula. The result can be expressed as a product of an exponential weight factor linked to the barrier height change and the difference between the threshold current and gain detuning-related loss current. The gain variation at cavity frequency due to thermal carrier loss and gain detuning processes is measured by using an AllnGaAs-AIGaAs VCSEL structure. This work provides a useful approach to analysing threshold and loss properties of the VCSEL, particularly, gain offset design for high temperature operation of VCSELs.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA03Z402)the Beijing Municipal Natural Science Foundation,China (Grant Nos. 4092007,4112006,4102003,and 4132006)+1 种基金the National Natural Science Foundation of China (Grant Nos. 61076044,61036002,61036009,and 60978067)the Doctoral Fund of the Ministry of Education of China (Grant No. 20121103110018)
文摘The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the transverse mode and polarization of VCSEL efficiently.We analyze the far field divergence angle,and birefringence of elliptical hole PC VCSEL.When the ratio of minor axis to major axis b/a = 0.7,the PC VCSEL can obtain single mode and polarization.According to the simulation results,we fabricate the device successfully.The output power is 1.7 mW,the far field divergence angle is less than 10°,and the side mode suppression ratio is over 30 dB.The output power in the Y direction is 20 times that in the X direction.
基金Supported by the‘Supporting First Action’Joint Foundation for Outstanding Postdoctoral Program under Grant Nos Y7YBSH0001 and Y7BSH14001the National Natural Science Foundation of China under Grant No 61434006the National Key Basic Research Program of China under Grant No 2017YFB0102302
文摘Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1×2 implant defined VCSEL arrays for optimum beam steering performance. Electroni- cally controlled beam steering with a maximum deflection angle of 1.6° is successfully achieved in the 1 × 2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632801the National Key Research and Development Program of China under Grant No 2016YFB0402303+2 种基金the National Natural Science Foundation of China under Grant Nos 61435014,61627822,61574136,61306058 and 61404131the Key Projects of Chinese Academy of Sciences under Grant No ZDRW-XH-2016-4the Beijing Natural Science Foundation under Grant No 4162060
文摘An external cavity quantum cascade laser (QCL) array with a wide tuning range and high output power is pre- sented. The coherent QCL array combined with a diffraction grating and gold mirror is tuned in the Littrow configuration. Taking advantage of the single-lobed fundamental supermode far-field pattern, the tuning capa- bility of 30.6cm-1 is achieved with a fixed injected current of 3.5 A at room temperature. Single-mode emission can be observed in the entire process. The maximum single-mode output power of the external cavity setup is as high as 25mW and is essential in real applications.
文摘In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer function. The function is based on the rate equations describing the carrier dynamics at different energy levels of dot and injector well. Although the frequency modulation response component associated with carrier dynamics in wetting layer(WL) and at excited state(ES) levels of dots limits the total bandwidth in conventional QD-VCSEL, our study shows that it can be compensated for by electron tunneling from the injector well into the dot in TIQD structure. Carrier back tunneling time is one of the most important parameters, and by increment of that, the bias current dependence of the total bandwidth will be insignificant. It is proved that at high bias current, the limitation of the WL-ES level plays an important role in reducing the total bandwidth and results in rollovers on 3-d B bandwidth-I curves. In such a way, for smaller air hole diameter of photonic crystal, the effect of this reduction is stronger.
文摘The wet oxidation of AlGaAs with high Al content in a distributed Bragg reflectors (DBR) is studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Some voids distribute along the oxide/GaAs interfaces due to the stress induced by the wet oxidation of the AlGaAs layers. These voids decrease the shrinkage of the Al2O3 layers to 8% instead of the theoretical 20% when compared to the unoxidized AlGaAs layers. With the extension of oxidation time, the reactants are more completely transported to the front interface and the products are more completely transported out along the porous interfaces. As a result,the oxide quality is better.
文摘A self-seeded fiber laser incorporated with a fiber Bragg grating external cavity semiconductor laser (FBG-ECL) and a Mach-Zehnder interferometer (MZI) were reported in this paper. The MZI provided a Q-switching with response time in the order of micro-seconds. The FBG-ECL provided narrow pulses as seeds to shorten the Q-switched pulses. Experimentally, pulse width of 0.8 μs was measured, which was one fifth of the pulse width without self-seeding.