GHz burst-mode femtosecond(fs)laser,which emits a series of pulse trains with extremely short intervals of several hundred picoseconds,provides distinct characteristics in materials processing as compared with the con...GHz burst-mode femtosecond(fs)laser,which emits a series of pulse trains with extremely short intervals of several hundred picoseconds,provides distinct characteristics in materials processing as compared with the conventional irradiation scheme of fs laser(single-pulse mode).In this paper,we take advantage of the moderate pulse interval of 205 ps(4.88 GHz)in the burst pulse for high-quality and high-efficiency micromachining of single crystalline sapphire by laser induced plasma assisted ablation(LIPAA).Specifically,the preceding pulses in the burst generate plasma by ablation of copper placed behind the sapphire substrate,which interacts with the subsequent pulses to induce ablation at the rear surface of sapphire substrates.As a result,not only the ablation quality but also the ablation efficiency and the fabrication resolution are greatly improved compared to the other schemes including single-pulse mode fs laser direct ablation,single-pulse mode fs-LIPAA,and nanosecond-LIPAA.展开更多
Spatial confinement has great potential for Laser Induced Breakdown Spectroscopy (LIBS) instruments after it has been proven that it has the ability to enhance the LIBS signal strength and repeatability. In order to...Spatial confinement has great potential for Laser Induced Breakdown Spectroscopy (LIBS) instruments after it has been proven that it has the ability to enhance the LIBS signal strength and repeatability. In order to achieve in-situ measurement of heavy metals in farmland soils by LIBS, a hemispherical spatial confinement device is designed and used to collect plasma spectra, in which the optical fibers directly collect the breakdown spectroscopy of the soil samples. This device could effectively increase the stability of the spectrum intensity of soil. It also has other advantages, such as ease of installation, and its small and compact size. The relationship between the spectrum intensity and the laser pulse energy is studied for this device. It is found that the breakdown threshold is 160 cm-2, and when the laser fluence increases to 250 J/cm2, the spectrum intensity reaches its maximum. Four different kinds of laser pulse energy were set up and in each case the limits of detection of Cd, Cu, Ni, Pb and Zn were calculated. The results show that when the laser pulse fluence was 2.12 GW/cm2, we obtained the smallest limits of detection of these heavy metals, which are all under 10 mg/kg. This device can satisfy the needs of heavy metal in-situ detection, and in the next step it will be integrated into a portable LIBS instrument.展开更多
With more than 30 years of development,laser-induced fluorescence(LIF)is becoming an increasingly common diagnostic to measure ion and neutral velocity distribution functions in different fields of studies in plasma s...With more than 30 years of development,laser-induced fluorescence(LIF)is becoming an increasingly common diagnostic to measure ion and neutral velocity distribution functions in different fields of studies in plasma science including Hall thrusters,linear devices,plasma processing,and basic plasma physical processes.In this paper,technical methods used in the LIF diagnostic,including modulation,collection optics,and wavelength calibration techniques are reviewed in detail.A few basic physical processes along with applications and future development associated with the LIF diagnostics are also reviewed.展开更多
The Kingdom of Saudi Arabia is one of the leading date producing countries. Unfortunately, this important fruit crop is under great threat from the red palm weevil (RPW) (Rhynchophorus ferrugineus), which is a hig...The Kingdom of Saudi Arabia is one of the leading date producing countries. Unfortunately, this important fruit crop is under great threat from the red palm weevil (RPW) (Rhynchophorus ferrugineus), which is a highly invasive pest. Several techniques, including visual inspection, acoustic sensors, sniffer dogs, and pheromone traps have been tried to detect the early stages of a RPW infestation; however, each method has suffered certain logistical and implementation issues. We have applied laser induced breakdown spectroscopy (LIBS) for the early detection of RPW infestation. Through the analysis of the observed LIBS spectra of different infested and healthy samples, we have found presence of Ca, Mg, Na, C, K elements and OH, CN molecules. The spectra also reveal that with the population growth of the pest, the intensity of Mg and Ca atomic lines in LIBS spectra increases rapidly. Similar behavior is observed in the molecular lines of LIBS spectra. The obtained results indicate that the LIBS technique can be used for the early detection of RPW infestation without damaging the date palms.展开更多
At present, heavy metal pollution in food occurs frequently, which requires a novel method for rapid detection. Laser induced breakdown spectroscopy (LIBS) is a new technique for rapid and environmental friendly det...At present, heavy metal pollution in food occurs frequently, which requires a novel method for rapid detection. Laser induced breakdown spectroscopy (LIBS) is a new technique for rapid and environmental friendly detection, but it lacks high sensitivity and stability which restrict its development. In this study, Cr-polluted infant milk powder was used as experimental material to explore the feasibility of the application of LIBS technique in food safety detection. Aiming at improving the precision and accuracy of Cr detection by LIBS technique, LIBS spectra of samples were collected by a spectrometer with an intensified charge-cou- pled device (ICCD) using three gratings with different resolutions to comprehensively compare and analyze the stability, sensitivity and quantitative analysis accura- cy of LIBS detection. The results showed that average relative standard deviation (RSD) of LIBS spectral intensity was below 10%, indicating good stability. LIBS signals were collected by three gratings for quantitative analysis, and the results demonstrated that the linear correlation coefficient R2 of fitting curves was 0. 248 87, 0.903 12 and 0.992 81, respectively; the relative errors between actual and predicted concentrations were 38.23%, 8.84% and 7.43%, respectively, indicating that gratings with higher resolutions could lead to higher linear correlation coefficient and better detection accuracy. According to the results, high-resolu- tion spectrometer could significantly improve the accuracy of LIBS detection of Cr concentration in milk powder, suggesting that it is feasible to detect heavy metals in food by LIBS technique with the improvement of core device performance.展开更多
Argon ion laser induced fluorescence measurements were carried out in a multipolar filament discharge with a broadband diode laser centered on 668 nm, which stimulated a transition from the metastable state in Ar(Ⅲ...Argon ion laser induced fluorescence measurements were carried out in a multipolar filament discharge with a broadband diode laser centered on 668 nm, which stimulated a transition from the metastable state in Ar(Ⅲ) 3d4F7/2 to 4p4D0 5/2. The intensity of the induced fluorescence at 442 nm was maximized by the optimization of the discharge parameters and the laser power. From the recovery of the background fluorescence after the laser was turned off, the ion diffusion coefficient was deduced and compared with the result inferred from the experiments of ion acoustic wave (IAW) damping.展开更多
Rare earth doped B2O3-Al2O3-SiO2 glass (RExBAS, x=5, 10, 20; RE=La, Sm) were prepared by solid state reaction method. Optical transmission spectra of such glass were characterized by ultraviolet spectrometers, and 1...Rare earth doped B2O3-Al2O3-SiO2 glass (RExBAS, x=5, 10, 20; RE=La, Sm) were prepared by solid state reaction method. Optical transmission spectra of such glass were characterized by ultraviolet spectrometers, and 1064 nm laser induced damage performance was investigated through the method of "1-on-1". The results indicated that there was a strong absorptive peak near 1064 nm in SmxBAS glass, the peak was enhanced with increasing x. While LaxBAS glass was transparent to 1064 nm laser, at the same time, the results of laser induced damage showed that the anti-laser induced damage performance of such glass was strengthened with the addition of rare earth oxide. Furthermore, the laser induced damage threshold (LIDT) of SmxBAS glass was significantly higher than that of LaxBAS glass. Consequently, Sm^3+ doping was favor in the improvement of anti-laser induced damage performance for BAS glass.展开更多
Laser induced periodic surface structures(LIPSS)represent a kind of top down approach to produce highly reproducible nano/microstructures without going for any sophisticated process of lithography.This method is much ...Laser induced periodic surface structures(LIPSS)represent a kind of top down approach to produce highly reproducible nano/microstructures without going for any sophisticated process of lithography.This method is much simpler and cost effective.In this work,LIPSS on Si surfaces were generated using femtosecond laser pulses of 800 nm wavelength.Photocatalytic substrates were prepared by depositing TiO2 thin films on top of the structured and unstructured Si wafer.The coatings were produced by sputtering from a Ti target in two different types of oxygen atmospheres.In first case,the oxygen pressure within the sputtering chamber was chosen to be high(3×10^–2 mbar)whereas it was one order of magnitude lower in second case(2.1×10^–3 mbar).In photocatalytic dye decomposition study of Methylene blue dye it was found that in the presence of LIPSS the activity can be enhanced by 2.1 and 3.3 times with high pressure and low pressure grown TiO2 thin films,respectively.The increase in photocatalytic activity is attributed to the enlargement of effective surface area.In comparative study,the dye decomposition rates of TiO2 thin films grown on LIPSS are found to be much higher than the value for standard reference thin film material Pilkington Activ^TM.展开更多
This paper proposes a novel one-colour Xe-Kr laser induced collisional ionization system. Considering the level scheme of the system, it finds that the initial state of the reaction--the four 4f levels with even J of ...This paper proposes a novel one-colour Xe-Kr laser induced collisional ionization system. Considering the level scheme of the system, it finds that the initial state of the reaction--the four 4f levels with even J of Xe-can be prepared through method of four-photon resonant excitation by dye laser with wavelength of -440 nm. Absorption of an additional photon (the transfer laser) of the same wavelength will complete the laser induced collisional ionization process. The resonance enhanced ionization spectrum of Xe by four laser photons at -440nm is measured through time-of-flight mass spectrometry, this aims at the preparation of the initial state of the system proposed. The Stark broadening of the measured spectrum is observed and consistent with the previous study. Analysis of the measured resonance ionization spectrum implies the feasibility of -440 nm four-photon resonant excitation of the initial 4f state of the Xe Kr system proposed in this paper, which prepares for a further experiment of laser induced collisional ionization.展开更多
cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d]imidazole(BCHMX)is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current ...cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d]imidazole(BCHMX)is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current literature for this material,we performed hyper-spectral imaging and laser induced fluorescence(LIF)to a BCHMX sample under low laser fluence for determining the optimum laser wavelength used in any future BCHMX-LIF based remote detection systems.For this purpose,an experimental setup consisted of a sun spectrum lamp and hyper-spectral camera was built to illuminate and image white powder samples of BCHMX in comparison with the traditional explosives,HMX(1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane),RDX(1,3,5-trinitro-1,3,5-triazacyclohexane),PETN(2,2-Bis[(nitroxy)methyl]propane-1,3-diyldinitrate).The imaging reveals strong BCHMX sample absorption contrast among other samples at wavelength ranging from 400 to 410 nm.When light source was replaced by a 405 nm laser diode illuminator,a strong BCHMX sample LIF at the spectral range from 425 to 700 nm was observed under low laser fluence condition of 0.1 mJ/cm^(2).Finally,we demonstrated successfully the ability of the 405 nm LIF and the hyperspectral imaging technique to detect finger print traces of BCHMX on white cellulose fabric from a distance of 15 m and a detection limit of 1 mg/cm^(2).展开更多
High resolution laser induced fluorescence, spectra of IrN in the spectral region between 394 and 520 nm were recorded using laser vaporization/reaction free jet expansion and laser induced fluorescence spectroscopy. ...High resolution laser induced fluorescence, spectra of IrN in the spectral region between 394 and 520 nm were recorded using laser vaporization/reaction free jet expansion and laser induced fluorescence spectroscopy. Seven new vibronic transition bands were observed and analyzed. Two Ω=1 and five Ω=0 new states were identified. Least squares fit of rotationally resolved transition lines yielded accurate molecular constants for the upper states. Spectra of isotopic molecules were observed, which provided confirmation for the vibrational assignment. Comparison of the observed electronic states of IrB, IrC, and IrN provides a good understanding of the chemical bonding of this group of molecules.展开更多
An optical transmission method was used in-situ to measure the rate of pyrolytic deposition from Mn_2(CO)_(10) induced by a CW CO_2 laser. The effect of the laser intensity, Mn_2(CO)_(10) vapor pressure and added gase...An optical transmission method was used in-situ to measure the rate of pyrolytic deposition from Mn_2(CO)_(10) induced by a CW CO_2 laser. The effect of the laser intensity, Mn_2(CO)_(10) vapor pressure and added gases (CO, O_2 and Ar) on the deposition rate has been examined.展开更多
Optical emission from TiO2 plasma, generated by a nanosecond laser is spectroscopically analysed. The main chemical species are identified and the spatio-temporal distribution of the plasma parameters such as electron...Optical emission from TiO2 plasma, generated by a nanosecond laser is spectroscopically analysed. The main chemical species are identified and the spatio-temporal distribution of the plasma parameters such as electron temperature and density are characterized based on the study of spectral distribution of the line intensities and their broadening characteristics. The parameters of laser induced plasma vary quickly owing to its expansion at low background pressure and the possible deviations from local thermodynamic equilibrium conditions are tested to show its validity.展开更多
Laser surgery provides clean,fast and accurate modeling of tissue.However,the inability to determine what kind of tissue is being ablated at the bottom of the cut may lead to the iatrogenic damage of structures that w...Laser surgery provides clean,fast and accurate modeling of tissue.However,the inability to determine what kind of tissue is being ablated at the bottom of the cut may lead to the iatrogenic damage of structures that were meant to be preserved.In this context,nerve preservation is one of the key challenges in any surgical procedure.One example is the treatment of parotid gland pathologies,where the facial nerve(N.VII) and its main branches run through and fan out inside the glands parenchyma.A feedback system that automatically stops the ablation to prevent nerve-tissue damage could greatly increase the applicability and safety of surgical laser systems.In the present study,Laser Induced Breakdown Spectroscopy(LIBS) is used to differentiate between nerve and gland tissue of an ex-vivo pig animal model.The LIBS results obtained in this preliminary experiment suggest that the measured spectra,containing atomic and molecular emissions,can be used to differentiate between the two tissue types.The measurements and differentiation were performed in open air and under normal stray light conditions.展开更多
We have developed a compact photoelectron imaging facility, including an anion source with dissociative photoelectron attachment to molecules, a linear time-of-flight mass spec-trometry (TOFMS), and an orthogonal hi...We have developed a compact photoelectron imaging facility, including an anion source with dissociative photoelectron attachment to molecules, a linear time-of-flight mass spec-trometry (TOFMS), and an orthogonal high-resolution threshold photoelectron velocity map imaging spectrometer (VMI). Intense and cold cluster anions were prepared in photoelectron- attachment processes upon pulsed UV laser ablation of metal target. Combining this anion source with TOFMS-VMI, the achieved mass resolution is about 200, and the electron ki- netic energy resolution is better than 3%, i.e., 30 meV for 1 eV electrons. More importantly, low-energy photoelectron imaging spectra for CH3S- and S2- at 611.46 nm are obtained. In both cases, the refined electron affinities are determined to be 1.86264-0.0020 eV for CH3S and 1.67444-0.0035 eV for S2, respectively. Preliminary results suggest that the apparatus is a powerful tool for estimating precise electron affinities values from threshold photoelectron imaging spectroscopy.展开更多
A new laser induced fluorescence imaging system used for detecting and locating the petroleum pollutants is presented. A unique feature of the system was using a combination of a frequency tripled Nd:YAG pulse laser ...A new laser induced fluorescence imaging system used for detecting and locating the petroleum pollutants is presented. A unique feature of the system was using a combination of a frequency tripled Nd:YAG pulse laser and an image intensified CCD camera as imaging detector. The delay time of the system and the exposure time of the CCD are controlled by a delay generator. Petroleum pollutants on various backgrounds had been detected and located by this system. This imaging technique provides a useful noninvasive approach for the detection of petroleum pollutants, which can be used in remote sensing.展开更多
Multiply charged ions of Ar and NO were observed in MPI experiment Of NO/Ar with TOF-MS. A delayable pulsed acceleration field wn applied tO investigate the effect of the photoelectrons on the formation of the multi...Multiply charged ions of Ar and NO were observed in MPI experiment Of NO/Ar with TOF-MS. A delayable pulsed acceleration field wn applied tO investigate the effect of the photoelectrons on the formation of the multiply charged ions. The multiply charged ions were suggested to be produced by photoelectron impact ionization, in the region bentween the extractor grid and the repeller plate, step by step, from neutral species and lower charged ions. The 50-60ns of FWHM of the ion peaks implies that the pulse width of the photoelectrons should be shorter considering the broadening effect during the ionization process.展开更多
Laser-induced breakdown spectroscopy (LIBS) technique has been applied to inves- tigate two different types of bacteria, Escherichia coli (B1) and Micrococcus luteus (B2) deposited on glass slides using Spectrol...Laser-induced breakdown spectroscopy (LIBS) technique has been applied to inves- tigate two different types of bacteria, Escherichia coli (B1) and Micrococcus luteus (B2) deposited on glass slides using Spectrolaser 7000. LIBS spectra were analyzed using spectrolaser software. LIBS spectrum of glass substrate was compared with bacteria spectra. Ca, Mg, Na, K, P, S, C1, Fe, A1, Mn, Cu, C, H and CN-band appeared in bacterial samples in air. Two carbon lines at 193.02 nm, 247.88 nm and one hydrogen line at 656.28 nm with intensity ratios of 1.9, 1.83 and 1.53 appeared in bacterial samples B1 and B2 respectively. Carbon and hydrogen are the important components of the bio-samples like bacteria and other cancer cells. Investigation on LIBS spectra of the samples in He and Ar atmospheres is also presented. Ni lines appeared only in B2 sample in Ar atmosphere. From the present experimental results we are able to show that LIBS technique has a potential in the identification and discrimination of different types of bacteria.展开更多
The chain reaction of 1,2-dichloroethane was initiated by photosensitization of SF_6 under the selective excitation using a cw CO_2 laser.Vinyl chloride with high purity was produced in the reaction process.The initia...The chain reaction of 1,2-dichloroethane was initiated by photosensitization of SF_6 under the selective excitation using a cw CO_2 laser.Vinyl chloride with high purity was produced in the reaction process.The initiation of the photosensitized chain reaction depends on the irradiated laser frequency.The mechanism of intermolecular resonant transfer of vibrational energy has been discussed.展开更多
The characteristics such as signal noise ratio(SNR) and sensitivity of the fluorescence detection system for micro-fluidic chip influence the performance of the whole system extremely. The confocal laser induced flu...The characteristics such as signal noise ratio(SNR) and sensitivity of the fluorescence detection system for micro-fluidic chip influence the performance of the whole system extremely. The confocal laser induced fluorescence detection system is presented. Based on the debugging of optical and circuit modules, the results of detecting the samples are given and analyzed theoretically, and the improved project is put forward.展开更多
基金supported by MEXT Quantum Leap Flagship Program(MEXT Q-LEAP)Grant Number JPMXS0118067246.
文摘GHz burst-mode femtosecond(fs)laser,which emits a series of pulse trains with extremely short intervals of several hundred picoseconds,provides distinct characteristics in materials processing as compared with the conventional irradiation scheme of fs laser(single-pulse mode).In this paper,we take advantage of the moderate pulse interval of 205 ps(4.88 GHz)in the burst pulse for high-quality and high-efficiency micromachining of single crystalline sapphire by laser induced plasma assisted ablation(LIPAA).Specifically,the preceding pulses in the burst generate plasma by ablation of copper placed behind the sapphire substrate,which interacts with the subsequent pulses to induce ablation at the rear surface of sapphire substrates.As a result,not only the ablation quality but also the ablation efficiency and the fabrication resolution are greatly improved compared to the other schemes including single-pulse mode fs laser direct ablation,single-pulse mode fs-LIPAA,and nanosecond-LIPAA.
文摘Spatial confinement has great potential for Laser Induced Breakdown Spectroscopy (LIBS) instruments after it has been proven that it has the ability to enhance the LIBS signal strength and repeatability. In order to achieve in-situ measurement of heavy metals in farmland soils by LIBS, a hemispherical spatial confinement device is designed and used to collect plasma spectra, in which the optical fibers directly collect the breakdown spectroscopy of the soil samples. This device could effectively increase the stability of the spectrum intensity of soil. It also has other advantages, such as ease of installation, and its small and compact size. The relationship between the spectrum intensity and the laser pulse energy is studied for this device. It is found that the breakdown threshold is 160 cm-2, and when the laser fluence increases to 250 J/cm2, the spectrum intensity reaches its maximum. Four different kinds of laser pulse energy were set up and in each case the limits of detection of Cd, Cu, Ni, Pb and Zn were calculated. The results show that when the laser pulse fluence was 2.12 GW/cm2, we obtained the smallest limits of detection of these heavy metals, which are all under 10 mg/kg. This device can satisfy the needs of heavy metal in-situ detection, and in the next step it will be integrated into a portable LIBS instrument.
基金supported by National Natural Science Foundation of China(No.11875285)。
文摘With more than 30 years of development,laser-induced fluorescence(LIF)is becoming an increasingly common diagnostic to measure ion and neutral velocity distribution functions in different fields of studies in plasma science including Hall thrusters,linear devices,plasma processing,and basic plasma physical processes.In this paper,technical methods used in the LIF diagnostic,including modulation,collection optics,and wavelength calibration techniques are reviewed in detail.A few basic physical processes along with applications and future development associated with the LIF diagnostics are also reviewed.
基金supported by King Saud University, Deanship of Scientific Research, College of Science Research Center
文摘The Kingdom of Saudi Arabia is one of the leading date producing countries. Unfortunately, this important fruit crop is under great threat from the red palm weevil (RPW) (Rhynchophorus ferrugineus), which is a highly invasive pest. Several techniques, including visual inspection, acoustic sensors, sniffer dogs, and pheromone traps have been tried to detect the early stages of a RPW infestation; however, each method has suffered certain logistical and implementation issues. We have applied laser induced breakdown spectroscopy (LIBS) for the early detection of RPW infestation. Through the analysis of the observed LIBS spectra of different infested and healthy samples, we have found presence of Ca, Mg, Na, C, K elements and OH, CN molecules. The spectra also reveal that with the population growth of the pest, the intensity of Mg and Ca atomic lines in LIBS spectra increases rapidly. Similar behavior is observed in the molecular lines of LIBS spectra. The obtained results indicate that the LIBS technique can be used for the early detection of RPW infestation without damaging the date palms.
文摘At present, heavy metal pollution in food occurs frequently, which requires a novel method for rapid detection. Laser induced breakdown spectroscopy (LIBS) is a new technique for rapid and environmental friendly detection, but it lacks high sensitivity and stability which restrict its development. In this study, Cr-polluted infant milk powder was used as experimental material to explore the feasibility of the application of LIBS technique in food safety detection. Aiming at improving the precision and accuracy of Cr detection by LIBS technique, LIBS spectra of samples were collected by a spectrometer with an intensified charge-cou- pled device (ICCD) using three gratings with different resolutions to comprehensively compare and analyze the stability, sensitivity and quantitative analysis accura- cy of LIBS detection. The results showed that average relative standard deviation (RSD) of LIBS spectral intensity was below 10%, indicating good stability. LIBS signals were collected by three gratings for quantitative analysis, and the results demonstrated that the linear correlation coefficient R2 of fitting curves was 0. 248 87, 0.903 12 and 0.992 81, respectively; the relative errors between actual and predicted concentrations were 38.23%, 8.84% and 7.43%, respectively, indicating that gratings with higher resolutions could lead to higher linear correlation coefficient and better detection accuracy. According to the results, high-resolu- tion spectrometer could significantly improve the accuracy of LIBS detection of Cr concentration in milk powder, suggesting that it is feasible to detect heavy metals in food by LIBS technique with the improvement of core device performance.
文摘Argon ion laser induced fluorescence measurements were carried out in a multipolar filament discharge with a broadband diode laser centered on 668 nm, which stimulated a transition from the metastable state in Ar(Ⅲ) 3d4F7/2 to 4p4D0 5/2. The intensity of the induced fluorescence at 442 nm was maximized by the optimization of the discharge parameters and the laser power. From the recovery of the background fluorescence after the laser was turned off, the ion diffusion coefficient was deduced and compared with the result inferred from the experiments of ion acoustic wave (IAW) damping.
基金the Natural Science Fund of Jangsu Provinence (BK2004121) Trans-Century Training Programme Foundation for the Talents by the Chinese Ministry of Education
文摘Rare earth doped B2O3-Al2O3-SiO2 glass (RExBAS, x=5, 10, 20; RE=La, Sm) were prepared by solid state reaction method. Optical transmission spectra of such glass were characterized by ultraviolet spectrometers, and 1064 nm laser induced damage performance was investigated through the method of "1-on-1". The results indicated that there was a strong absorptive peak near 1064 nm in SmxBAS glass, the peak was enhanced with increasing x. While LaxBAS glass was transparent to 1064 nm laser, at the same time, the results of laser induced damage showed that the anti-laser induced damage performance of such glass was strengthened with the addition of rare earth oxide. Furthermore, the laser induced damage threshold (LIDT) of SmxBAS glass was significantly higher than that of LaxBAS glass. Consequently, Sm^3+ doping was favor in the improvement of anti-laser induced damage performance for BAS glass.
基金Deutsche Forschungsgemeinschaft (DFG), Germany (Grant number GR 1782/12)Science and Engineering Research Board (SERB), India (Grant number EMR/2015/001175)
文摘Laser induced periodic surface structures(LIPSS)represent a kind of top down approach to produce highly reproducible nano/microstructures without going for any sophisticated process of lithography.This method is much simpler and cost effective.In this work,LIPSS on Si surfaces were generated using femtosecond laser pulses of 800 nm wavelength.Photocatalytic substrates were prepared by depositing TiO2 thin films on top of the structured and unstructured Si wafer.The coatings were produced by sputtering from a Ti target in two different types of oxygen atmospheres.In first case,the oxygen pressure within the sputtering chamber was chosen to be high(3×10^–2 mbar)whereas it was one order of magnitude lower in second case(2.1×10^–3 mbar).In photocatalytic dye decomposition study of Methylene blue dye it was found that in the presence of LIPSS the activity can be enhanced by 2.1 and 3.3 times with high pressure and low pressure grown TiO2 thin films,respectively.The increase in photocatalytic activity is attributed to the enlargement of effective surface area.In comparative study,the dye decomposition rates of TiO2 thin films grown on LIPSS are found to be much higher than the value for standard reference thin film material Pilkington Activ^TM.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10674036 and 10774033)Program for New Century Excellent Talents in UniversityProgram of Excellent Team in Harbin Institute of Technology
文摘This paper proposes a novel one-colour Xe-Kr laser induced collisional ionization system. Considering the level scheme of the system, it finds that the initial state of the reaction--the four 4f levels with even J of Xe-can be prepared through method of four-photon resonant excitation by dye laser with wavelength of -440 nm. Absorption of an additional photon (the transfer laser) of the same wavelength will complete the laser induced collisional ionization process. The resonance enhanced ionization spectrum of Xe by four laser photons at -440nm is measured through time-of-flight mass spectrometry, this aims at the preparation of the initial state of the system proposed. The Stark broadening of the measured spectrum is observed and consistent with the previous study. Analysis of the measured resonance ionization spectrum implies the feasibility of -440 nm four-photon resonant excitation of the initial 4f state of the Xe Kr system proposed in this paper, which prepares for a further experiment of laser induced collisional ionization.
文摘cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d]imidazole(BCHMX)is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current literature for this material,we performed hyper-spectral imaging and laser induced fluorescence(LIF)to a BCHMX sample under low laser fluence for determining the optimum laser wavelength used in any future BCHMX-LIF based remote detection systems.For this purpose,an experimental setup consisted of a sun spectrum lamp and hyper-spectral camera was built to illuminate and image white powder samples of BCHMX in comparison with the traditional explosives,HMX(1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane),RDX(1,3,5-trinitro-1,3,5-triazacyclohexane),PETN(2,2-Bis[(nitroxy)methyl]propane-1,3-diyldinitrate).The imaging reveals strong BCHMX sample absorption contrast among other samples at wavelength ranging from 400 to 410 nm.When light source was replaced by a 405 nm laser diode illuminator,a strong BCHMX sample LIF at the spectral range from 425 to 700 nm was observed under low laser fluence condition of 0.1 mJ/cm^(2).Finally,we demonstrated successfully the ability of the 405 nm LIF and the hyperspectral imaging technique to detect finger print traces of BCHMX on white cellulose fabric from a distance of 15 m and a detection limit of 1 mg/cm^(2).
文摘High resolution laser induced fluorescence, spectra of IrN in the spectral region between 394 and 520 nm were recorded using laser vaporization/reaction free jet expansion and laser induced fluorescence spectroscopy. Seven new vibronic transition bands were observed and analyzed. Two Ω=1 and five Ω=0 new states were identified. Least squares fit of rotationally resolved transition lines yielded accurate molecular constants for the upper states. Spectra of isotopic molecules were observed, which provided confirmation for the vibrational assignment. Comparison of the observed electronic states of IrB, IrC, and IrN provides a good understanding of the chemical bonding of this group of molecules.
文摘An optical transmission method was used in-situ to measure the rate of pyrolytic deposition from Mn_2(CO)_(10) induced by a CW CO_2 laser. The effect of the laser intensity, Mn_2(CO)_(10) vapor pressure and added gases (CO, O_2 and Ar) on the deposition rate has been examined.
文摘Optical emission from TiO2 plasma, generated by a nanosecond laser is spectroscopically analysed. The main chemical species are identified and the spatio-temporal distribution of the plasma parameters such as electron temperature and density are characterized based on the study of spectral distribution of the line intensities and their broadening characteristics. The parameters of laser induced plasma vary quickly owing to its expansion at low background pressure and the possible deviations from local thermodynamic equilibrium conditions are tested to show its validity.
基金the funding of the Erlangen Graduate School in Advanced Optical Technologies(SAOT)by the Deutsche Forschungsgemeinschaft(German Research Foundation-DFG) within the framework of the Initiative for Excellence
文摘Laser surgery provides clean,fast and accurate modeling of tissue.However,the inability to determine what kind of tissue is being ablated at the bottom of the cut may lead to the iatrogenic damage of structures that were meant to be preserved.In this context,nerve preservation is one of the key challenges in any surgical procedure.One example is the treatment of parotid gland pathologies,where the facial nerve(N.VII) and its main branches run through and fan out inside the glands parenchyma.A feedback system that automatically stops the ablation to prevent nerve-tissue damage could greatly increase the applicability and safety of surgical laser systems.In the present study,Laser Induced Breakdown Spectroscopy(LIBS) is used to differentiate between nerve and gland tissue of an ex-vivo pig animal model.The LIBS results obtained in this preliminary experiment suggest that the measured spectra,containing atomic and molecular emissions,can be used to differentiate between the two tissue types.The measurements and differentiation were performed in open air and under normal stray light conditions.
文摘We have developed a compact photoelectron imaging facility, including an anion source with dissociative photoelectron attachment to molecules, a linear time-of-flight mass spec-trometry (TOFMS), and an orthogonal high-resolution threshold photoelectron velocity map imaging spectrometer (VMI). Intense and cold cluster anions were prepared in photoelectron- attachment processes upon pulsed UV laser ablation of metal target. Combining this anion source with TOFMS-VMI, the achieved mass resolution is about 200, and the electron ki- netic energy resolution is better than 3%, i.e., 30 meV for 1 eV electrons. More importantly, low-energy photoelectron imaging spectra for CH3S- and S2- at 611.46 nm are obtained. In both cases, the refined electron affinities are determined to be 1.86264-0.0020 eV for CH3S and 1.67444-0.0035 eV for S2, respectively. Preliminary results suggest that the apparatus is a powerful tool for estimating precise electron affinities values from threshold photoelectron imaging spectroscopy.
文摘A new laser induced fluorescence imaging system used for detecting and locating the petroleum pollutants is presented. A unique feature of the system was using a combination of a frequency tripled Nd:YAG pulse laser and an image intensified CCD camera as imaging detector. The delay time of the system and the exposure time of the CCD are controlled by a delay generator. Petroleum pollutants on various backgrounds had been detected and located by this system. This imaging technique provides a useful noninvasive approach for the detection of petroleum pollutants, which can be used in remote sensing.
文摘Multiply charged ions of Ar and NO were observed in MPI experiment Of NO/Ar with TOF-MS. A delayable pulsed acceleration field wn applied tO investigate the effect of the photoelectrons on the formation of the multiply charged ions. The multiply charged ions were suggested to be produced by photoelectron impact ionization, in the region bentween the extractor grid and the repeller plate, step by step, from neutral species and lower charged ions. The 50-60ns of FWHM of the ion peaks implies that the pulse width of the photoelectrons should be shorter considering the broadening effect during the ionization process.
基金supported by King Saud University,Deanship of Scientific Research,College of Science Research Center
文摘Laser-induced breakdown spectroscopy (LIBS) technique has been applied to inves- tigate two different types of bacteria, Escherichia coli (B1) and Micrococcus luteus (B2) deposited on glass slides using Spectrolaser 7000. LIBS spectra were analyzed using spectrolaser software. LIBS spectrum of glass substrate was compared with bacteria spectra. Ca, Mg, Na, K, P, S, C1, Fe, A1, Mn, Cu, C, H and CN-band appeared in bacterial samples in air. Two carbon lines at 193.02 nm, 247.88 nm and one hydrogen line at 656.28 nm with intensity ratios of 1.9, 1.83 and 1.53 appeared in bacterial samples B1 and B2 respectively. Carbon and hydrogen are the important components of the bio-samples like bacteria and other cancer cells. Investigation on LIBS spectra of the samples in He and Ar atmospheres is also presented. Ni lines appeared only in B2 sample in Ar atmosphere. From the present experimental results we are able to show that LIBS technique has a potential in the identification and discrimination of different types of bacteria.
文摘The chain reaction of 1,2-dichloroethane was initiated by photosensitization of SF_6 under the selective excitation using a cw CO_2 laser.Vinyl chloride with high purity was produced in the reaction process.The initiation of the photosensitized chain reaction depends on the irradiated laser frequency.The mechanism of intermolecular resonant transfer of vibrational energy has been discussed.
基金Key Science and Technology Project Tackled of Guangdong Province(B2050070)
文摘The characteristics such as signal noise ratio(SNR) and sensitivity of the fluorescence detection system for micro-fluidic chip influence the performance of the whole system extremely. The confocal laser induced fluorescence detection system is presented. Based on the debugging of optical and circuit modules, the results of detecting the samples are given and analyzed theoretically, and the improved project is put forward.