A new multi-channel far infrared (FIR) laser interferometer was built up and ap- plied to HL-2A. The unique feature of real-time heterodyne interferometer is the combination of high power radiation source (300 mW)...A new multi-channel far infrared (FIR) laser interferometer was built up and ap- plied to HL-2A. The unique feature of real-time heterodyne interferometer is the combination of high power radiation source (300 mW), lower noise room temperature detector (noise tempera- ture below 6000 K) with good spatial resolution of 7 cm. Various parameters are optimized for maximum laser output power. Zero crossings of the signals are counted with field programmable gate array (FPGA) digital circuitry yielding the resolution of 1/1000 fringe. The newly measured results including density fluctuation are also presented.展开更多
A single-channel far-infrared (FIR) laser interferometer was developed to measure the line averaged electron density on the EAST tokamak. The structure of the single-channel FIR laser interferometer is described in ...A single-channel far-infrared (FIR) laser interferometer was developed to measure the line averaged electron density on the EAST tokamak. The structure of the single-channel FIR laser interferometer is described in detail. The evolution of density sawtooth oscillation was measured by means the FIR laser interferometer, and was identified by electron cyclotron emission (ECE) signals and soft X-ray intensity. The discharges with and without sawtooth were compared with each other in the Hugill diagram.展开更多
The accuracy and repeatability of the laser interferometer measurement system (LIMS) are often limited by the mirror surface error that comes from the mirror surface shape and distortion. This paper describes a new ...The accuracy and repeatability of the laser interferometer measurement system (LIMS) are often limited by the mirror surface error that comes from the mirror surface shape and distortion. This paper describes a new method to calibrate mirror map on ultraprecise movement stage (UPMS) with nanopositioning and to make a real-time compensation for the mirror surface error by using mirror map data tables with the software algorithm. Based on the mirror map test model, the factors affecting mirror map are analyzed through geometric method on the UPMS with six digrees of freedom. Dam processing methods including spline interpolation and spline offsets are used to process the raw sampling data to build mirror map tables. The linear interpolation as compensation method to make a real-time correction on the stage mirror unflatness is adopted and the correction formulas are illuminated. In this way, the measurement accuracy of the system is obviously improved from 40 nm to 5 nm.展开更多
A multichannel methanoic acid (HCOOH, λ=432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ=337 μm) laser interferometer in the HL-2A tokamak....A multichannel methanoic acid (HCOOH, λ=432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ=337 μm) laser interferometer in the HL-2A tokamak. A conventional Michelson-type interometer is used for the electron density measurement, and a Dodel-Kunz-type polarimeter is used for the Faraday rotation effect measurement, respectively. Each HCOOH laser can produce a linearly polarized radiation at a power lever of -30 mW, and a power stability 〈10% in 50 rain. A beam waist (diameter d0 ≈12.0 mm, about 200 mm away from the outlet) is finally determined through a chopping modulation technique. The latest optical layout of the interferometer/polarimeter has been finished, and the hardware data processing system based on the fast Fourier transform phase- comparator technique is being explored. In order to demonstrate the feasibility of the diagnostic scheme, two associated bench simulation experiments were carried out in the laboratory, in which the plasma was simulated by a piece of polytetrafluoroethene plate, and the Faraday rotation effect was simulated by a rotating half-wave plate. Simulation results agreed well with the initial experimental conditions. At present, the HCOOH laser interferometer/polarimeter system is being assembled on HL-2A, and is planned to be applied in the 2014-2015 experimental campaign.展开更多
In National Astronomical Observatory, Japan, Mitaka, a group of scientists has been constructing a laser interferometer with two Fabry Perot cavities 300m long, one in North South and one in East West directions. The ...In National Astronomical Observatory, Japan, Mitaka, a group of scientists has been constructing a laser interferometer with two Fabry Perot cavities 300m long, one in North South and one in East West directions. The interferomer is to detect any gravitational wave near 400Hz frequency and stronger than 10 -20 by autumn, 1998 all the instruments have been installed in the underground facilities and it will be operated for more than 30 days in April, 1999. Then a recycling device will be installed to increase the sensitivity by factor of 10. In this paper this system as well as other systems such as LIGOs in UAS and VIRGO in Europe will be reviewed.展开更多
In order to achieve high-accuracy measurement of radius of curvature of optical sphere, ultra-high accuracy radius of curvature testing device is developed by dual-frequency laser interferometer and Fizeau interferome...In order to achieve high-accuracy measurement of radius of curvature of optical sphere, ultra-high accuracy radius of curvature testing device is developed by dual-frequency laser interferometer and Fizeau interferometer based on cat’s eye and confocal method. Through analyzing the error source models of radius of curvature testing, optical configuration of the testing device has been optimized. Precise environment control and real-time monitoring system is also established to reduce the errors caused by environment. Through the above processes, the radius of curvature measurement relative accuracy is better than 2 ppm. One optical sphere, R88.5 mm, test aperture 59 mm, has been tested. Testing result is 88499.465 ± 0.176 μm, meeting the design requirement. The method has high accuracy and practical advantages.展开更多
In this paper,we present a suppression method for the thermal drift of an ultra-stable laser interferometer.The detailed analysis on the Michelson interferometer indicates that the change in optical path length induce...In this paper,we present a suppression method for the thermal drift of an ultra-stable laser interferometer.The detailed analysis on the Michelson interferometer indicates that the change in optical path length induced by temperature variation can be effectively reduced by choosing proper thickness and/or incident angle of a compensator.Taking the optical bench of the Laser Interferometer Space Antenna Pathfinder as an example,we analyze the optical bench model with a compensator and show that the temperature coefficient of this laser interferometer can be reduced down to 1 pm/K with an incident angle of 0.267828 rad.The method presented in this paper can be used in the design of ultra-stable laser interferometers,especially for space-based gravitational waves detection.展开更多
This study shows that the principle of a recently proposed connnon-path laser interferometer containing a planar grating is nonexistent and apparently caused by a mathematical derivation error. Both p- and s-polarized...This study shows that the principle of a recently proposed connnon-path laser interferometer containing a planar grating is nonexistent and apparently caused by a mathematical derivation error. Both p- and s-polarized beams ill the proposed setup experience once the +lst-order diffraction and once the lst-order diffraction by tile grating. As a result, the phase of each beam remains unchanged and the interference fringes formed by the two beams are not expected to move when the grating is translated in the grating vector direction. We perform an experiment to confirm this prediction. Both our analysis and experimental observation cast doubt on the experimental results of the authors who proposed the interferometer.展开更多
A method is proposed to solve the problem of direction discrimination for laser feedback interferometers. By vibrating the feedback mirror with a small-amplitude and high-frequency sine wave, laser intensity is modula...A method is proposed to solve the problem of direction discrimination for laser feedback interferometers. By vibrating the feedback mirror with a small-amplitude and high-frequency sine wave, laser intensity is modulated accordingly. The modulation amplitude can be extracted using a phase sensitive detector (PSD). When the feedback mirror moves, the PSD output shows a quasi-sine waveform similar to a laser intensity interference fringe but with a phase difference of approximately ±π/2. If the movement direction of the feedback mirror changes, the phase difference sign reverses. Therefore, the laser feedback interferometer offers a potential application in displacement measurement with a resolution of 1/8 wavelength and in-time direction discrimination. Without using optical components such as polarization beam splitters and wave plates, the interferometer is very simple, easy to align, and less costly.展开更多
Precision measurement tools are compulsory to reduce measurement errors or machining errors in the processes of calibration and manufacturing.The laser interferometer is one of the most important measurement tools inv...Precision measurement tools are compulsory to reduce measurement errors or machining errors in the processes of calibration and manufacturing.The laser interferometer is one of the most important measurement tools invented in the 20th century.Today,it is commonly used in ultraprecision machining and manufacturing,ultraprecision positioning control,and many noncontact optical sensing technologies.So far,the state-of-the-art laser interferometers are the ground-based gravitational-wave detectors,e.g.the Laser Interferometer Gravitational-wave Observatory(LIGO).The LIGO has reached the measurement quantum limit,and some quantum technologies with squeezed light are currently being tested in order to further decompress the noise level.In this paper,we focus on the laser interferometry developed for space-based gravitational-wave detection.The basic working principle and the current status of the key technologies of intersatellite laser interferometry are introduced and discussed in detail.The launch and operation of these large-scale,gravitational-wave detectors based on space-based laser interferometry is proposed for the 2030s.展开更多
Structure, improvements and experiment results of a vertical three-channel far- in- frared (FIR) hydrogen cyanide (HCN) laser interferometer, operated routinely in EAST to measure the electron density profile, are...Structure, improvements and experiment results of a vertical three-channel far- in- frared (FIR) hydrogen cyanide (HCN) laser interferometer, operated routinely in EAST to measure the electron density profile, are presented. Moreover, a five-channel deuterium cyanide (DCN) laser interferometer was developed successfully. Some key issues confronted in development, including the economization of working gas and the solution to atmospheric absorption, are resolved and described in detail.展开更多
This paper demonstrates the influence of external optical feedback on the polarization state of longitudinal modes in quasi-isotropic microchip Nd:YAG lasers. Under optical feedback, the polarization state of longitu...This paper demonstrates the influence of external optical feedback on the polarization state of longitudinal modes in quasi-isotropic microchip Nd:YAG lasers. Under optical feedback, the polarization state of longitudinal modes in quasi-isotropic lasers relies strongly on the intracavity anisotropy loss and mode competition. When the intracavity anisotropy loss is small, external optical feedback can cause polarization switching and strong mode competition between two orthogonal linearly polarized eigenstates of one laser longitudinal mode, which leads to the distortion of laser intensity modulation waveform. The polarization switching is independent of the initial external cavity length. By increasing the intracavity anisotropy loss, one polarization eigenstate can be suppressed and the laser works in single-polarization state. A theoretical analysis based on the compound cavity model is presented, which is in good agreement with the experimental results. The results offer guidance to the development of laser feedback interferometers.展开更多
It is well known that the accuracy of camera calibration is constrained by the size of the reference plate,it is difficult to fabricate large reference plates with high precision.Therefore,it is non-trivial to calibra...It is well known that the accuracy of camera calibration is constrained by the size of the reference plate,it is difficult to fabricate large reference plates with high precision.Therefore,it is non-trivial to calibrate a camera with large field of view(FOV).In this paper,a method is proposed to construct a virtual large reference plate with high precision.Firstly,a high precision datum plane is constructed with a laser interferometer and one-dimensional air guideway,and then the reference plate is positioned at different locations and orientations in the FOV of the camera.The feature points of reference plate are projected to the datum plane to obtain a virtual large reference plate with high-precision.The camera is moved to several positions to get different virtual reference plates,and the camera is calibrated with the virtual reference plates.The experimental results show that the mean re-projection error of the camera calibrated with the proposed method is 0.062 pixels.The length of a scale bar with standard length of 959.778mm was measured with a vision system composed of two calibrated cameras,and the length measurement error is 0.389mm.展开更多
System architecture is presented for an automatic measurement of thermal expansion. The dynamic measurement of the temperature and thermal expansion displacement of the material is carried out through the application ...System architecture is presented for an automatic measurement of thermal expansion. The dynamic measurement of the temperature and thermal expansion displacement of the material is carried out through the application of Labview. The expansion and temperature of material is stored and displayed in real-time. Then the thermal expansion coefficient can be obtained. The measure- ment system composes of SIOS-SP120D laser interferometer, high vacuum furnace, rbh8223h data acquisition card, rbhS104 conditioning board, constant computer power supply. The USB interface is adopted to collect the temperature and displacement data. Experimental results show that the system has high measurement accuracy and good man-machine interface properties.展开更多
The paper proves that due to the existence of electromagnetic interaction, the experiments of LIGO cannot detect gravitational waves. This is also the reason why Weber’s experiments of gravitational waves failed. In ...The paper proves that due to the existence of electromagnetic interaction, the experiments of LIGO cannot detect gravitational waves. This is also the reason why Weber’s experiments of gravitational waves failed. In fact, the formulas of general relativity that gravitational waves affect distances are only suitable for particles in vacuum. LIGO experiments are carried out on the earth. The laser interferometers are fixed on the steel pipes on the earth’s surface in the balanced state of electromagnetic force. Electromagnetic force is 10<sup>40</sup> times greater than gravity. Gravitational waves are too weak to overcome electromagnetic force and change the length of steel pipes. Without considering this factor, the design principle of LIGO experiment has serious problem. The experiments to detect gravitational waves should move to space to avoid the influence of electromagnetic interaction. Besides, LIGO experiments have the following problems. 1) No explosion source of gravitational waves is really founded. 2) The argument that the Einstein’s theory of gravity is verified is a vicious circle and invalid in logic. 3) The results of experiments cause sharp contradiction for the energy currents of gravitational waves. The difference reaches to 10<sup>24</sup> times and is unacceptable. 4) The method of numerical relativity causes great errors due to the existence of singularities. The errors are enlarged by the effect of butterfly due to the non-linearity of Einstein’s equation of gravity. 5) The so-called change of length 10<sup>-18</sup> m between two glasses of interferometers detected in the experiment exceeds the ability of current technique. This kind of precise has entered micro-scalar. The uncertain principle of quantum mechanics makes it impossible. The signs appeared in LIGO experiments are not caused by distance change. 6) LIGO experiments have not detected gravitational waves. What detected may be the signs of disturbances coming from the middle region between two laser interferometers.展开更多
This article presents a new type of whitening filter (allowing the “passing” of some noise sources) applied to process the data recorded in LIGO’s GW150914 and GW151226 events. This new analysis shows that in the G...This article presents a new type of whitening filter (allowing the “passing” of some noise sources) applied to process the data recorded in LIGO’s GW150914 and GW151226 events. This new analysis shows that in the GW150914 event, the signals from the collision of two black holes are very similar to the 32.5 Hz noise sources observed in both of LIGO’s detectors. It also points out that these 32.5 Hz noise sources are powered by a 30 Hz sub harmonic, coming from the 60 Hz power system. In the GW1226 event, the same analysis points out that the NR template is very similar to the 120 Hz noise source. Therefore, the signals recorded in these events were probably generated by some small changes with the 60 Hz frequency in the US power grid. This can be caused, for example, by a power variation in the DC link, which can appear in both detectors in the same 10 ms time window. As this kind of power grid occurrence did not change the voltage levels, it may have gone unnoticed by LIGO’s electrical power supply’s monitoring system.展开更多
The main factors affecting the dynamic errors of coordinate measuring machines are analyzed. It is pointed out that there are two main contributors to the dynamic errors: One is the rotation of the elements around the...The main factors affecting the dynamic errors of coordinate measuring machines are analyzed. It is pointed out that there are two main contributors to the dynamic errors: One is the rotation of the elements around the joints connected with air bearings and the other is the bending of the elements caused by the dynamic inertial forces. A method for obtaining the displacement errors at the probe position from dynamic rotational errors is presented. The dynamic rotational errors are measured with inductive position sensors and a laser interferometer. The theoretical and experimental results both show that during the process of fast probing, due to the dynamic inertial forces, there are not only large rotation of the elements around the joints connected with air bearings but also large bending of the weak elements themselves.展开更多
In this Letter,we propose a simple structure of an orthogonal type double Michelson interferometer.The orthogonal detection method overcomes the problems of uneven ranging sensitivity and the inability of traditional ...In this Letter,we propose a simple structure of an orthogonal type double Michelson interferometer.The orthogonal detection method overcomes the problems of uneven ranging sensitivity and the inability of traditional interferometers to determine the displacement direction.The displacement measurement principle and signal processing method of the orthogonal double interferometer are studied.Unlike the arctangent algorithm,the displacement analysis uses the arc cosine algorithm,avoiding any pole limit in the distance analysis process.The minimum step size of the final experimental displacement system is 5 nm,which exhibits good repeatability,and the average error is less than 0.12 nm.展开更多
Accurate prediction of hypersonic boundary-layer transition plays an important role in thermal protection system design of hypersonic vehicles.Restricted by the capability of spatial diagnostics for hypersonic boundar...Accurate prediction of hypersonic boundary-layer transition plays an important role in thermal protection system design of hypersonic vehicles.Restricted by the capability of spatial diagnostics for hypersonic boundary-layer study,quite a lot of problems of hypersonic boundary-layer transition,such as nonlinearity and receptivity,remain outstanding.This work reports the application of focused laser differential interferometer to instability wave development across hypersonic boundary-layer on a flared cone model.To begin with,the focused laser differential interferometer is designed and set up in a Mach number 6 hypersonic quiet wind tunnel with the focal point in the laminar boundary-layer of a 5 degree half-angle flared cone model.Afterwards,instability experiments are carried out by traversing the focal point throughout the hypersonic boundary-layer and the density fluctuation along the boundary-layer profile is measured and analyzed.The results show that three types of instability waves ranging from 10 k Hz to over 1 MHz are co-existing in the hypersonic boundary-layer,indicating the powerful capability of focused laser differential interferometer in dynamic response resolution for instability wave study in hypersonic flow regime;furthermore,quantitative analyses including spectra and bicoherence analysis of instability waves throughout the hypersonic boundary-layer for both cold and heated cone models are performed.展开更多
Based on a single-channel laser self-mixing interferometcr, we present a new silnultaneous measurement of the vibration amplitude and tile rotation angle of objects that both affect the power spectrum containing two p...Based on a single-channel laser self-mixing interferometcr, we present a new silnultaneous measurement of the vibration amplitude and tile rotation angle of objects that both affect the power spectrum containing two peaks of the interferometer signals. The fitted results indicate that the curve of the peak frequency versus the vibration amplitude follows a linear distribution, and the curve of the difference of the two-peak power values versus the angle follows a Gaussian distribution. A vibration amplitude with an error less than 3.0% and a rotation angle with an error less than 11.7% are calculated from the fitted results.展开更多
基金National Natural Science Foundation of China (Nos.10575030,10675043)the JSPS-CAS Core University Program in the field of Plasma and Nuclear Fusion
文摘A new multi-channel far infrared (FIR) laser interferometer was built up and ap- plied to HL-2A. The unique feature of real-time heterodyne interferometer is the combination of high power radiation source (300 mW), lower noise room temperature detector (noise tempera- ture below 6000 K) with good spatial resolution of 7 cm. Various parameters are optimized for maximum laser output power. Zero crossings of the signals are counted with field programmable gate array (FPGA) digital circuitry yielding the resolution of 1/1000 fringe. The newly measured results including density fluctuation are also presented.
基金National Natural Science Foundation of China(Nos.10475078,10675127,10675126,10675124,10605028)
文摘A single-channel far-infrared (FIR) laser interferometer was developed to measure the line averaged electron density on the EAST tokamak. The structure of the single-channel FIR laser interferometer is described in detail. The evolution of density sawtooth oscillation was measured by means the FIR laser interferometer, and was identified by electron cyclotron emission (ECE) signals and soft X-ray intensity. The discharges with and without sawtooth were compared with each other in the Hugill diagram.
文摘The accuracy and repeatability of the laser interferometer measurement system (LIMS) are often limited by the mirror surface error that comes from the mirror surface shape and distortion. This paper describes a new method to calibrate mirror map on ultraprecise movement stage (UPMS) with nanopositioning and to make a real-time compensation for the mirror surface error by using mirror map data tables with the software algorithm. Based on the mirror map test model, the factors affecting mirror map are analyzed through geometric method on the UPMS with six digrees of freedom. Dam processing methods including spline interpolation and spline offsets are used to process the raw sampling data to build mirror map tables. The linear interpolation as compensation method to make a real-time correction on the stage mirror unflatness is adopted and the correction formulas are illuminated. In this way, the measurement accuracy of the system is obviously improved from 40 nm to 5 nm.
基金supported by the National Magnetic Confinement Fusion Science Programs of China(Nos.2010GB101002 and 2014GB109001)National Natural Science Foundation of China(Nos.11075048 and 11275059)
文摘A multichannel methanoic acid (HCOOH, λ=432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ=337 μm) laser interferometer in the HL-2A tokamak. A conventional Michelson-type interometer is used for the electron density measurement, and a Dodel-Kunz-type polarimeter is used for the Faraday rotation effect measurement, respectively. Each HCOOH laser can produce a linearly polarized radiation at a power lever of -30 mW, and a power stability 〈10% in 50 rain. A beam waist (diameter d0 ≈12.0 mm, about 200 mm away from the outlet) is finally determined through a chopping modulation technique. The latest optical layout of the interferometer/polarimeter has been finished, and the hardware data processing system based on the fast Fourier transform phase- comparator technique is being explored. In order to demonstrate the feasibility of the diagnostic scheme, two associated bench simulation experiments were carried out in the laboratory, in which the plasma was simulated by a piece of polytetrafluoroethene plate, and the Faraday rotation effect was simulated by a rotating half-wave plate. Simulation results agreed well with the initial experimental conditions. At present, the HCOOH laser interferometer/polarimeter system is being assembled on HL-2A, and is planned to be applied in the 2014-2015 experimental campaign.
文摘In National Astronomical Observatory, Japan, Mitaka, a group of scientists has been constructing a laser interferometer with two Fabry Perot cavities 300m long, one in North South and one in East West directions. The interferomer is to detect any gravitational wave near 400Hz frequency and stronger than 10 -20 by autumn, 1998 all the instruments have been installed in the underground facilities and it will be operated for more than 30 days in April, 1999. Then a recycling device will be installed to increase the sensitivity by factor of 10. In this paper this system as well as other systems such as LIGOs in UAS and VIRGO in Europe will be reviewed.
文摘In order to achieve high-accuracy measurement of radius of curvature of optical sphere, ultra-high accuracy radius of curvature testing device is developed by dual-frequency laser interferometer and Fizeau interferometer based on cat’s eye and confocal method. Through analyzing the error source models of radius of curvature testing, optical configuration of the testing device has been optimized. Precise environment control and real-time monitoring system is also established to reduce the errors caused by environment. Through the above processes, the radius of curvature measurement relative accuracy is better than 2 ppm. One optical sphere, R88.5 mm, test aperture 59 mm, has been tested. Testing result is 88499.465 ± 0.176 μm, meeting the design requirement. The method has high accuracy and practical advantages.
基金supported by the Natural Science Foundation of Guangdong Province (No. 2021A1515010198)the Guangzhou Science and Technology Plan Project (No. 202102020794)the National Key R&D Program of China (No. 2020YFC2200500)
文摘In this paper,we present a suppression method for the thermal drift of an ultra-stable laser interferometer.The detailed analysis on the Michelson interferometer indicates that the change in optical path length induced by temperature variation can be effectively reduced by choosing proper thickness and/or incident angle of a compensator.Taking the optical bench of the Laser Interferometer Space Antenna Pathfinder as an example,we analyze the optical bench model with a compensator and show that the temperature coefficient of this laser interferometer can be reduced down to 1 pm/K with an incident angle of 0.267828 rad.The method presented in this paper can be used in the design of ultra-stable laser interferometers,especially for space-based gravitational waves detection.
文摘This study shows that the principle of a recently proposed connnon-path laser interferometer containing a planar grating is nonexistent and apparently caused by a mathematical derivation error. Both p- and s-polarized beams ill the proposed setup experience once the +lst-order diffraction and once the lst-order diffraction by tile grating. As a result, the phase of each beam remains unchanged and the interference fringes formed by the two beams are not expected to move when the grating is translated in the grating vector direction. We perform an experiment to confirm this prediction. Both our analysis and experimental observation cast doubt on the experimental results of the authors who proposed the interferometer.
文摘A method is proposed to solve the problem of direction discrimination for laser feedback interferometers. By vibrating the feedback mirror with a small-amplitude and high-frequency sine wave, laser intensity is modulated accordingly. The modulation amplitude can be extracted using a phase sensitive detector (PSD). When the feedback mirror moves, the PSD output shows a quasi-sine waveform similar to a laser intensity interference fringe but with a phase difference of approximately ±π/2. If the movement direction of the feedback mirror changes, the phase difference sign reverses. Therefore, the laser feedback interferometer offers a potential application in displacement measurement with a resolution of 1/8 wavelength and in-time direction discrimination. Without using optical components such as polarization beam splitters and wave plates, the interferometer is very simple, easy to align, and less costly.
基金the National Natural Science Foundation of China(Grant Nos.11655001,11654004,91836104).
文摘Precision measurement tools are compulsory to reduce measurement errors or machining errors in the processes of calibration and manufacturing.The laser interferometer is one of the most important measurement tools invented in the 20th century.Today,it is commonly used in ultraprecision machining and manufacturing,ultraprecision positioning control,and many noncontact optical sensing technologies.So far,the state-of-the-art laser interferometers are the ground-based gravitational-wave detectors,e.g.the Laser Interferometer Gravitational-wave Observatory(LIGO).The LIGO has reached the measurement quantum limit,and some quantum technologies with squeezed light are currently being tested in order to further decompress the noise level.In this paper,we focus on the laser interferometry developed for space-based gravitational-wave detection.The basic working principle and the current status of the key technologies of intersatellite laser interferometry are introduced and discussed in detail.The launch and operation of these large-scale,gravitational-wave detectors based on space-based laser interferometry is proposed for the 2030s.
文摘Structure, improvements and experiment results of a vertical three-channel far- in- frared (FIR) hydrogen cyanide (HCN) laser interferometer, operated routinely in EAST to measure the electron density profile, are presented. Moreover, a five-channel deuterium cyanide (DCN) laser interferometer was developed successfully. Some key issues confronted in development, including the economization of working gas and the solution to atmospheric absorption, are resolved and described in detail.
基金supported by the National Natural Science Foundation of China (Grant No. 30870662)
文摘This paper demonstrates the influence of external optical feedback on the polarization state of longitudinal modes in quasi-isotropic microchip Nd:YAG lasers. Under optical feedback, the polarization state of longitudinal modes in quasi-isotropic lasers relies strongly on the intracavity anisotropy loss and mode competition. When the intracavity anisotropy loss is small, external optical feedback can cause polarization switching and strong mode competition between two orthogonal linearly polarized eigenstates of one laser longitudinal mode, which leads to the distortion of laser intensity modulation waveform. The polarization switching is independent of the initial external cavity length. By increasing the intracavity anisotropy loss, one polarization eigenstate can be suppressed and the laser works in single-polarization state. A theoretical analysis based on the compound cavity model is presented, which is in good agreement with the experimental results. The results offer guidance to the development of laser feedback interferometers.
文摘It is well known that the accuracy of camera calibration is constrained by the size of the reference plate,it is difficult to fabricate large reference plates with high precision.Therefore,it is non-trivial to calibrate a camera with large field of view(FOV).In this paper,a method is proposed to construct a virtual large reference plate with high precision.Firstly,a high precision datum plane is constructed with a laser interferometer and one-dimensional air guideway,and then the reference plate is positioned at different locations and orientations in the FOV of the camera.The feature points of reference plate are projected to the datum plane to obtain a virtual large reference plate with high-precision.The camera is moved to several positions to get different virtual reference plates,and the camera is calibrated with the virtual reference plates.The experimental results show that the mean re-projection error of the camera calibrated with the proposed method is 0.062 pixels.The length of a scale bar with standard length of 959.778mm was measured with a vision system composed of two calibrated cameras,and the length measurement error is 0.389mm.
文摘System architecture is presented for an automatic measurement of thermal expansion. The dynamic measurement of the temperature and thermal expansion displacement of the material is carried out through the application of Labview. The expansion and temperature of material is stored and displayed in real-time. Then the thermal expansion coefficient can be obtained. The measure- ment system composes of SIOS-SP120D laser interferometer, high vacuum furnace, rbh8223h data acquisition card, rbhS104 conditioning board, constant computer power supply. The USB interface is adopted to collect the temperature and displacement data. Experimental results show that the system has high measurement accuracy and good man-machine interface properties.
文摘The paper proves that due to the existence of electromagnetic interaction, the experiments of LIGO cannot detect gravitational waves. This is also the reason why Weber’s experiments of gravitational waves failed. In fact, the formulas of general relativity that gravitational waves affect distances are only suitable for particles in vacuum. LIGO experiments are carried out on the earth. The laser interferometers are fixed on the steel pipes on the earth’s surface in the balanced state of electromagnetic force. Electromagnetic force is 10<sup>40</sup> times greater than gravity. Gravitational waves are too weak to overcome electromagnetic force and change the length of steel pipes. Without considering this factor, the design principle of LIGO experiment has serious problem. The experiments to detect gravitational waves should move to space to avoid the influence of electromagnetic interaction. Besides, LIGO experiments have the following problems. 1) No explosion source of gravitational waves is really founded. 2) The argument that the Einstein’s theory of gravity is verified is a vicious circle and invalid in logic. 3) The results of experiments cause sharp contradiction for the energy currents of gravitational waves. The difference reaches to 10<sup>24</sup> times and is unacceptable. 4) The method of numerical relativity causes great errors due to the existence of singularities. The errors are enlarged by the effect of butterfly due to the non-linearity of Einstein’s equation of gravity. 5) The so-called change of length 10<sup>-18</sup> m between two glasses of interferometers detected in the experiment exceeds the ability of current technique. This kind of precise has entered micro-scalar. The uncertain principle of quantum mechanics makes it impossible. The signs appeared in LIGO experiments are not caused by distance change. 6) LIGO experiments have not detected gravitational waves. What detected may be the signs of disturbances coming from the middle region between two laser interferometers.
文摘This article presents a new type of whitening filter (allowing the “passing” of some noise sources) applied to process the data recorded in LIGO’s GW150914 and GW151226 events. This new analysis shows that in the GW150914 event, the signals from the collision of two black holes are very similar to the 32.5 Hz noise sources observed in both of LIGO’s detectors. It also points out that these 32.5 Hz noise sources are powered by a 30 Hz sub harmonic, coming from the 60 Hz power system. In the GW1226 event, the same analysis points out that the NR template is very similar to the 120 Hz noise source. Therefore, the signals recorded in these events were probably generated by some small changes with the 60 Hz frequency in the US power grid. This can be caused, for example, by a power variation in the DC link, which can appear in both detectors in the same 10 ms time window. As this kind of power grid occurrence did not change the voltage levels, it may have gone unnoticed by LIGO’s electrical power supply’s monitoring system.
文摘The main factors affecting the dynamic errors of coordinate measuring machines are analyzed. It is pointed out that there are two main contributors to the dynamic errors: One is the rotation of the elements around the joints connected with air bearings and the other is the bending of the elements caused by the dynamic inertial forces. A method for obtaining the displacement errors at the probe position from dynamic rotational errors is presented. The dynamic rotational errors are measured with inductive position sensors and a laser interferometer. The theoretical and experimental results both show that during the process of fast probing, due to the dynamic inertial forces, there are not only large rotation of the elements around the joints connected with air bearings but also large bending of the weak elements themselves.
基金supported in part by the National Natural Science Foundation of China(No.62005194).
文摘In this Letter,we propose a simple structure of an orthogonal type double Michelson interferometer.The orthogonal detection method overcomes the problems of uneven ranging sensitivity and the inability of traditional interferometers to determine the displacement direction.The displacement measurement principle and signal processing method of the orthogonal double interferometer are studied.Unlike the arctangent algorithm,the displacement analysis uses the arc cosine algorithm,avoiding any pole limit in the distance analysis process.The minimum step size of the final experimental displacement system is 5 nm,which exhibits good repeatability,and the average error is less than 0.12 nm.
基金the State Key Laboratory for Turbulence&Complex Systems of Peking University for their support in this studysupport of National Numerical Wind-tunnel(No.2018-ZT1A03)+1 种基金National Natural Science Foundation of China grant(No.11702106)Fundamental Research Funds for the Central Universities(2019kfyXKJC001)。
文摘Accurate prediction of hypersonic boundary-layer transition plays an important role in thermal protection system design of hypersonic vehicles.Restricted by the capability of spatial diagnostics for hypersonic boundary-layer study,quite a lot of problems of hypersonic boundary-layer transition,such as nonlinearity and receptivity,remain outstanding.This work reports the application of focused laser differential interferometer to instability wave development across hypersonic boundary-layer on a flared cone model.To begin with,the focused laser differential interferometer is designed and set up in a Mach number 6 hypersonic quiet wind tunnel with the focal point in the laminar boundary-layer of a 5 degree half-angle flared cone model.Afterwards,instability experiments are carried out by traversing the focal point throughout the hypersonic boundary-layer and the density fluctuation along the boundary-layer profile is measured and analyzed.The results show that three types of instability waves ranging from 10 k Hz to over 1 MHz are co-existing in the hypersonic boundary-layer,indicating the powerful capability of focused laser differential interferometer in dynamic response resolution for instability wave study in hypersonic flow regime;furthermore,quantitative analyses including spectra and bicoherence analysis of instability waves throughout the hypersonic boundary-layer for both cold and heated cone models are performed.
基金supported by the National Natural Science Foundation of China under Grant Nos.61275165,61201401,and 61307098
文摘Based on a single-channel laser self-mixing interferometcr, we present a new silnultaneous measurement of the vibration amplitude and tile rotation angle of objects that both affect the power spectrum containing two peaks of the interferometer signals. The fitted results indicate that the curve of the peak frequency versus the vibration amplitude follows a linear distribution, and the curve of the difference of the two-peak power values versus the angle follows a Gaussian distribution. A vibration amplitude with an error less than 3.0% and a rotation angle with an error less than 11.7% are calculated from the fitted results.