Fabrication of micro gratings using a femtosecond laser exposure system is experimentally investigated for the electron moire method. Micro holes and lines are firstly etched for parameter study. Grating profile is th...Fabrication of micro gratings using a femtosecond laser exposure system is experimentally investigated for the electron moire method. Micro holes and lines are firstly etched for parameter study. Grating profile is theoretically optimized to form high quality moire patterns. For a demonstration, a parallel grating is fabricated on a specimen of quartz glass. The minimum line width and the distance between two adjacent lines are both set to be 1 μm, and the frequency of grating is 500 lines/ram. The experimental results indicate that the quality of gratings is good and the relative error of the gratings pitch is about 1.5%. Based on molte method, scanning electron microscope (SEM) moire patterns are observed clearly, which manifests that gratings fabricated with the femtosecond laser exposure is suitable for micro scale deformation measurement.展开更多
In-situ characterization of non-aqueous nano-dispersion systems(NANDS) by freeze-etching transmission electron microscope(FETEM) was reported.To improve just-for-once successive rate of specimen preparation and ge...In-situ characterization of non-aqueous nano-dispersion systems(NANDS) by freeze-etching transmission electron microscope(FETEM) was reported.To improve just-for-once successive rate of specimen preparation and get good characterization results,an improving specimen preparation method of freezing etching was developed.Size,distribution and morphology of NANDS were directly visualized.Some information of particle dispersion feature and particle density can also be obtained.Reproductivity of the FETEM characterization is excellent.Comparing with laser scattering method,which is liable to give positive error especially for small size particle anchoring disperser,FETEM characterization can give more accurate measurement of particle size.Moreover,FETEM can give dispersion feature of nanoparticle in non-aqueous medium.展开更多
Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoerciviti...Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoercivities of the MnBi/Bi film are 1.5 T and 2.35 T at room temperature and at 373K, respectively, showing a positive temperature coefficient. Microstructural investigations show that the textured MnBi film results from the orientated growth induced by the textured Bi under-layer.展开更多
Laser Quenching is one of main contents in laser heat treatment. At present, computer simulation on cooling course of laser quenching is the main research field and the foundation of calculating inner thermal stresses...Laser Quenching is one of main contents in laser heat treatment. At present, computer simulation on cooling course of laser quenching is the main research field and the foundation of calculating inner thermal stresses in object. It also provides theoretical basis for optimizing and controlling the course of laser quenching technology. In this paper, the difference between finite element method and finite differential method, which are two methods to calculate the laser quenching temperature field and calculation precision are studied. The unstable temperature field is solved and the configure and time are discretizcd simultaneously. About time discrete, two kinds of differential pattern are discussed. Compared the calculation results with measurement values, it shows that the differential method adopting in the paper is feasible and the calculation precision and calculation velocity can be increased to use variable step-size about time. Also, the result testifies that different calculation methods can be employed in case of variable application situation and calculation precision.展开更多
In order to obtain a high-quality weld during the laser welding process, extracting the characteristic parameters of weld pool is an important issue for automated welding. In this paper, the type 304 austenitic stainl...In order to obtain a high-quality weld during the laser welding process, extracting the characteristic parameters of weld pool is an important issue for automated welding. In this paper, the type 304 austenitic stainless steel is welded by a 5 kW high-power fiber laser and a high-speed camera is employed to capture the topside images of weld pools. Then we propose a robust visual-detection approach for the molten pool based on the supervised descent method. It provides an elegant framework for representing the outline of a weld pool and is especially efficient for weld pool detection in the presence of strong uncertainties and disturbances. Finally, welding experimental results verified that the proposed approach can extract the weld pool boundary accurately, which will lay a solid foundation for controlling the weld quality of fiber laser welding process.展开更多
A sensitive method to determine the optic axis azimuth of the birefringence element is presented, which is based on laser feedback. The phase difference between the two intensities in birefringence feedback changes wi...A sensitive method to determine the optic axis azimuth of the birefringence element is presented, which is based on laser feedback. The phase difference between the two intensities in birefringence feedback changes with the angle between the optic axis of the birefringence element and laser original polarization. The phase difference is highly sensitive to the relative position of the optic axis and the laser original polarization. This method is used to highly precisely determine the optic axis azimuth, and is able to distinguish between the fast axis and the slow axis of the birefringence element. Theoretical analysis and experimental results are both demonstrated.展开更多
Purpose: The aim of this systematic review was to answer the question “Which treatment protocol, am- ong classical methods and/or various laser applica- tions is the most effective in root canal disinfection, in vitr...Purpose: The aim of this systematic review was to answer the question “Which treatment protocol, am- ong classical methods and/or various laser applica- tions is the most effective in root canal disinfection, in vitro”. Materials and Methods: A MEDLINE, a Co- chrane and an Embase search (three specified search- es) were conducted to identify randomized controlled trials (RCT) until June 2010, conducted on human teeth and published in English, German or French language, examining the root canal disinfection after the use of lasers with or without mechanical instru-mentation. Additionally, hand search was conducted and contact with authors, when needed. Results: The MEDLINE, the Cochrane and the EMBASE search identified 240, 28, and 35 published articles, respec-tively. Ten articles from the MEDLINE and 5 articles from the Cochrane search (that were also identified in the MEDLINE search) met the inclusion and va-lidity assessment criteria. In E. faecalis elimination, instrumentation of the root canal and diode laser/665 nanometer/1 Watt (diode laser/665 nm/1 W) irradia-tion with the combined effect of Methylene Blue (MB) as photosensitizing agent (logCFU/ml = 1636) seemed to be the best method. In P. aeruginosa and in A.naeslundii elimination, instrumentation of the root canal followed by irrigation with 5, 25% NaOCl (log-CFU/ml = 0) seemed to be the best method. In gen-eral, instrumentation of the root canal followed by irrigation with 5, 25% NaOCl (logCFU/ml = 0) and instrumentation of the root canal and Er: YAG laser/ 2940 nm/0.8 W irradiation (logCFU/ml = 1924) seemed to be the best (polymicrobial studies). Conclusions: There are treatment protocols with the assistance or not of laser irradiation that can eliminate E. faecalis, E. coli and S. aureus inside the root canal. However, there is a serious number of S. anginosus, F. nuclea-tum, A. naeslundii and P. aeruginosa that remain in-side the root canal even after laser irradiation. New research is needed in order to set a treatment proto-col effective in the root canal disinfection from all bac-teria that are related to endodontic origin pathology.展开更多
In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the sol...In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the soliton selffrequency shift is remarkable and the photonic crystal fibre (PCF) parameters vary with the frequency considerably. The precision of numerical simulation by using ASSFM is higher than that by using split-step Fourier method in the process of laser pulse propagation in PCFs due to the fact that the variation of fibre parameters with the peak frequency in the pulse spectrum can be taken into account fully.展开更多
The high harmonic generation (HHG) from the CS<sub>2</sub> molecule in intense laser fields is investigated using the extended Lewenstein method. The initial state is the highest-occupied molecular orbital...The high harmonic generation (HHG) from the CS<sub>2</sub> molecule in intense laser fields is investigated using the extended Lewenstein method. The initial state is the highest-occupied molecular orbital of the CS<sub>2</sub> molecule, which can be well described by Gaussian wave packet using GAMESS-UK package. Compared with the case of the elliptical laser, the HHG can be extended in two-color circularly polarized laser field. The time-frequency analysis and classical electron trajectory as well as the ionization yield curve are also presented to further explain the underlying mechanism. After adding a static electric field on the z-direction, the single quantum path control is realized and the supercontinuum spectra are obtained. Moreover, an isolated 110 as pulse can be obtained by superposing the harmonics from 130th to 180th order.展开更多
We propose a simple iterative algorithm based on a temporally movable phase modulation process to retrieve the weak temporal phase of laser pulses. This unambiguous method can be used to achieve a high accuracy and to...We propose a simple iterative algorithm based on a temporally movable phase modulation process to retrieve the weak temporal phase of laser pulses. This unambiguous method can be used to achieve a high accuracy and to simultaneously measure the weak temporal phase and temporal profile of pulses, which are almost transform- limited. A detailed analysis shows that this iterative method has valuable potential applications in the charac- terization of pulses with weak temporal phase.展开更多
In the presented study, the laser butt-welding of Ti 6Al 4V is investigated using 2.2 kw CO2 laser. Ti 6Al 4V alloy has widespread application in various fields of industries including the medical, nuclear and aerospa...In the presented study, the laser butt-welding of Ti 6Al 4V is investigated using 2.2 kw CO2 laser. Ti 6Al 4V alloy has widespread application in various fields of industries including the medical, nuclear and aerospace. In this study, Response Surface Methodology (RSM) is employed to establish the design of experiments and to optimize the bead geometry. The relationships between the input laser-welding parameters (i.e. laser power, welding speed and focal point position) and the process responses (i.e. welded zone width, heat affected zone width, welded zone area, heat affected zone area and penetration depth) are investigated. The multi-response optimizations are used to optimize the welding process. The optimum welding conditions are identified in order to increase the productivity and minimize the total operating cost. The validation results demonstrate that the developed models are accurate with low percentages of error (less than 12.5%).展开更多
In this paper, we present an energy calibration method based on steep Compton edges of the laser Compton scattered(LCS) photon energy spectra. It performs consecutive energy calibration in the neighborhood of certain ...In this paper, we present an energy calibration method based on steep Compton edges of the laser Compton scattered(LCS) photon energy spectra. It performs consecutive energy calibration in the neighborhood of certain energy, hence improves calibration precision in the energy region. It can also achieve direct calibration at high energy region(several MeV) where detectors can only be calibrated by extrapolation in conventional methods.These make it suitable for detectors that need wide-range energy calibration with high precision. The effects of systematic uncertainties on accuracy of this calibration method are studied by simulation, using the design parameters of a LCS device—SINAP Ⅲ. The results show that the SINAP Ⅲ device is able to perform energy calibration work over the energy region of 25–740 keV. The precision of calibration is better than 1.6% from 25 to 300 keV and is better than 0.5% from 300 to 740 keV.展开更多
A three-dimensional finite element thermal model in direct metal laser sintering(DMLS) including the effect of powder-to-solid transition were established to predict sintering zone, which benefited the determination o...A three-dimensional finite element thermal model in direct metal laser sintering(DMLS) including the effect of powder-to-solid transition were established to predict sintering zone, which benefited the determination of suitable process parameters in DMLS. The nonlinear transient model of the metals thermal conductivity for powder-to-solid transition was developed. The model uses solid thermal properties of material in liquid-phase zone, transitional ones in sintering or sintered zone and powder ones in unsintered zones of powder bed to predict, respectively. Sintering zone boundary was estimated by maximum temperature history profile. Experiments were carried out using multi-component Cu-based metal powder. Compared experimental and predicted results, the mean error of sintering depth and width are 7.8% and 14.4%, respectively, which confirms the accuracy of the FEM prediction.展开更多
Laser surface hardening becomes one of the most effective techniques used to enhance wear and fatigue resistance of mechanical parts. The characteristics of the hardened surface depend on the physicochemical propertie...Laser surface hardening becomes one of the most effective techniques used to enhance wear and fatigue resistance of mechanical parts. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To adequately exploit the benefits presented by the laser heating method, it is necessary to develop a comprehensive strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive approach used to build a simplified model for predicting the hardness profile. A finite element method based prediction model for AISI 4340 steel is investigated. A circular shape with a Gaussian distribution is used for modeling the laser heat source. COMSOL MULTIPHYSICS software is used to solve the heat transfer equations, estimate the temperature distribution in the part and consequently predict the hardness profile. A commercial 3 kW Nd:Yag laser system is combined to a structured experimental design and confirmed statistical analysis tools for conducting the experimental calibration and validation of the model. The results reveal that the model can effectively lead to a consistent and accurate prediction of the hardness profile characteristics under variable hardening parameters and conditions. The results show great concordance between predicted and measured values for the dimensions of hardened and melted zones.展开更多
A numerical analysis was carried out to study the moving boundary problem in the physical process of pulsed Nd-YAG laser surface melting prior to vaporization.The enthalpy method was applied to solve this two-phase ax...A numerical analysis was carried out to study the moving boundary problem in the physical process of pulsed Nd-YAG laser surface melting prior to vaporization.The enthalpy method was applied to solve this two-phase axisymmetrical mehing problem.Computational results of tempera ture fields were obtained,which provide useful information to practical lair treatment processing. The validity of enthalpy method in solving such problems is presented.展开更多
In order to achieve high-accuracy measurement of radius of curvature of optical sphere, ultra-high accuracy radius of curvature testing device is developed by dual-frequency laser interferometer and Fizeau interferome...In order to achieve high-accuracy measurement of radius of curvature of optical sphere, ultra-high accuracy radius of curvature testing device is developed by dual-frequency laser interferometer and Fizeau interferometer based on cat’s eye and confocal method. Through analyzing the error source models of radius of curvature testing, optical configuration of the testing device has been optimized. Precise environment control and real-time monitoring system is also established to reduce the errors caused by environment. Through the above processes, the radius of curvature measurement relative accuracy is better than 2 ppm. One optical sphere, R88.5 mm, test aperture 59 mm, has been tested. Testing result is 88499.465 ± 0.176 μm, meeting the design requirement. The method has high accuracy and practical advantages.展开更多
The Laser Induced Breakdown Spectroscopy (LIBS) is a fast, non-contact, no sample preparation analytic technology;it is very suitable for on-line analysis of alloy composition. In the copper smelting industry, analysi...The Laser Induced Breakdown Spectroscopy (LIBS) is a fast, non-contact, no sample preparation analytic technology;it is very suitable for on-line analysis of alloy composition. In the copper smelting industry, analysis and control of the copper alloy concentration affect the quality of the products greatly, so LIBS is an efficient quantitative analysis tech- nology in the copper smelting industry. But for the lead brass, the components of Pb, Al and Ni elements are very low and the atomic emission lines are easily submerged under copper complex characteristic spectral lines because of the matrix effects. So it is difficult to get the online quantitative result of these important elements. In this paper, both the partial least squares (PLS) method and the calibration curve (CC) method are used to quantitatively analyze the laser induced breakdown spectroscopy data which is obtained from the standard lead brass alloy samples. Both the major and trace elements were quantitatively analyzed. By comparing the two results of the different calibration method, some useful results were obtained: both for major and trace elements, the PLS method was better than the CC method in quantitative analysis. And the regression coefficient of PLS method is compared with the original spectral data with background interference to explain the advantage of the PLS method in the LIBS quantitative analysis. Results proved that the PLS method used in laser induced breakdown spectroscopy was suitable for simultaneous quantitative analysis of different content elements in copper smelting industry.展开更多
We report spectroscopic studies on plasma electron number density of laser-induced plasma produced by ns-Nd:YAG laser light pulses on an aluminum sample in air at atmospheric pressure. The effect of different laser e...We report spectroscopic studies on plasma electron number density of laser-induced plasma produced by ns-Nd:YAG laser light pulses on an aluminum sample in air at atmospheric pressure. The effect of different laser energy and the effect of different laser wavelengths were compared. The experimentally observed line profiles of neutral aluminum have been used to extract the excitation temperature using the Boltzmann plot method, whereas the electron number density has been determined from the Stark broadened as well as using the Saha-Boltzmann equation (SBE). Each approach was also carried out by using the AI emission line and Mg emission lines. It was observed that the,SBE method generated a little higher electron number density value than the Stark broadening, method, but within the experimental uncertainty range. Comparisons of Ne determined by the two methods show the presence of a linear relation which is independent of laser energy or laser wavelength. These results show the applicability of the SBE method for Are determination, especially when the system does not have any pure emission lines whose electron impact factor is known, Also use of Mg lines gives superior results than Al lines.展开更多
基金support from the National Natural Science Foundation of China (11372118 and 11302082)
文摘Fabrication of micro gratings using a femtosecond laser exposure system is experimentally investigated for the electron moire method. Micro holes and lines are firstly etched for parameter study. Grating profile is theoretically optimized to form high quality moire patterns. For a demonstration, a parallel grating is fabricated on a specimen of quartz glass. The minimum line width and the distance between two adjacent lines are both set to be 1 μm, and the frequency of grating is 500 lines/ram. The experimental results indicate that the quality of gratings is good and the relative error of the gratings pitch is about 1.5%. Based on molte method, scanning electron microscope (SEM) moire patterns are observed clearly, which manifests that gratings fabricated with the femtosecond laser exposure is suitable for micro scale deformation measurement.
基金Funded by National Natural Science Foundation of China(No.50572121) Key Pre-research Foundation of Weapon and Equipment(No. 9140A27010206JB35)
文摘In-situ characterization of non-aqueous nano-dispersion systems(NANDS) by freeze-etching transmission electron microscope(FETEM) was reported.To improve just-for-once successive rate of specimen preparation and get good characterization results,an improving specimen preparation method of freezing etching was developed.Size,distribution and morphology of NANDS were directly visualized.Some information of particle dispersion feature and particle density can also be obtained.Reproductivity of the FETEM characterization is excellent.Comparing with laser scattering method,which is liable to give positive error especially for small size particle anchoring disperser,FETEM characterization can give more accurate measurement of particle size.Moreover,FETEM can give dispersion feature of nanoparticle in non-aqueous medium.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51171001,51371009 and 50971003the Foundation of Key Laboratory of Neutron Physics of CAEP under Grant No 2014BB02
文摘Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoercivities of the MnBi/Bi film are 1.5 T and 2.35 T at room temperature and at 373K, respectively, showing a positive temperature coefficient. Microstructural investigations show that the textured MnBi film results from the orientated growth induced by the textured Bi under-layer.
文摘Laser Quenching is one of main contents in laser heat treatment. At present, computer simulation on cooling course of laser quenching is the main research field and the foundation of calculating inner thermal stresses in object. It also provides theoretical basis for optimizing and controlling the course of laser quenching technology. In this paper, the difference between finite element method and finite differential method, which are two methods to calculate the laser quenching temperature field and calculation precision are studied. The unstable temperature field is solved and the configure and time are discretizcd simultaneously. About time discrete, two kinds of differential pattern are discussed. Compared the calculation results with measurement values, it shows that the differential method adopting in the paper is feasible and the calculation precision and calculation velocity can be increased to use variable step-size about time. Also, the result testifies that different calculation methods can be employed in case of variable application situation and calculation precision.
基金Project was supported by the National Key R&D Program of China(Grant No.2017YFB1104404)
文摘In order to obtain a high-quality weld during the laser welding process, extracting the characteristic parameters of weld pool is an important issue for automated welding. In this paper, the type 304 austenitic stainless steel is welded by a 5 kW high-power fiber laser and a high-speed camera is employed to capture the topside images of weld pools. Then we propose a robust visual-detection approach for the molten pool based on the supervised descent method. It provides an elegant framework for representing the outline of a weld pool and is especially efficient for weld pool detection in the presence of strong uncertainties and disturbances. Finally, welding experimental results verified that the proposed approach can extract the weld pool boundary accurately, which will lay a solid foundation for controlling the weld quality of fiber laser welding process.
基金Project supported by the Natural Science Foundation of Beijing,China(Grant No.3091002)
文摘A sensitive method to determine the optic axis azimuth of the birefringence element is presented, which is based on laser feedback. The phase difference between the two intensities in birefringence feedback changes with the angle between the optic axis of the birefringence element and laser original polarization. The phase difference is highly sensitive to the relative position of the optic axis and the laser original polarization. This method is used to highly precisely determine the optic axis azimuth, and is able to distinguish between the fast axis and the slow axis of the birefringence element. Theoretical analysis and experimental results are both demonstrated.
文摘Purpose: The aim of this systematic review was to answer the question “Which treatment protocol, am- ong classical methods and/or various laser applica- tions is the most effective in root canal disinfection, in vitro”. Materials and Methods: A MEDLINE, a Co- chrane and an Embase search (three specified search- es) were conducted to identify randomized controlled trials (RCT) until June 2010, conducted on human teeth and published in English, German or French language, examining the root canal disinfection after the use of lasers with or without mechanical instru-mentation. Additionally, hand search was conducted and contact with authors, when needed. Results: The MEDLINE, the Cochrane and the EMBASE search identified 240, 28, and 35 published articles, respec-tively. Ten articles from the MEDLINE and 5 articles from the Cochrane search (that were also identified in the MEDLINE search) met the inclusion and va-lidity assessment criteria. In E. faecalis elimination, instrumentation of the root canal and diode laser/665 nanometer/1 Watt (diode laser/665 nm/1 W) irradia-tion with the combined effect of Methylene Blue (MB) as photosensitizing agent (logCFU/ml = 1636) seemed to be the best method. In P. aeruginosa and in A.naeslundii elimination, instrumentation of the root canal followed by irrigation with 5, 25% NaOCl (log-CFU/ml = 0) seemed to be the best method. In gen-eral, instrumentation of the root canal followed by irrigation with 5, 25% NaOCl (logCFU/ml = 0) and instrumentation of the root canal and Er: YAG laser/ 2940 nm/0.8 W irradiation (logCFU/ml = 1924) seemed to be the best (polymicrobial studies). Conclusions: There are treatment protocols with the assistance or not of laser irradiation that can eliminate E. faecalis, E. coli and S. aureus inside the root canal. However, there is a serious number of S. anginosus, F. nuclea-tum, A. naeslundii and P. aeruginosa that remain in-side the root canal even after laser irradiation. New research is needed in order to set a treatment proto-col effective in the root canal disinfection from all bac-teria that are related to endodontic origin pathology.
文摘In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the soliton selffrequency shift is remarkable and the photonic crystal fibre (PCF) parameters vary with the frequency considerably. The precision of numerical simulation by using ASSFM is higher than that by using split-step Fourier method in the process of laser pulse propagation in PCFs due to the fact that the variation of fibre parameters with the peak frequency in the pulse spectrum can be taken into account fully.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574117,11271158,61575077 and 11575071
文摘The high harmonic generation (HHG) from the CS<sub>2</sub> molecule in intense laser fields is investigated using the extended Lewenstein method. The initial state is the highest-occupied molecular orbital of the CS<sub>2</sub> molecule, which can be well described by Gaussian wave packet using GAMESS-UK package. Compared with the case of the elliptical laser, the HHG can be extended in two-color circularly polarized laser field. The time-frequency analysis and classical electron trajectory as well as the ionization yield curve are also presented to further explain the underlying mechanism. After adding a static electric field on the z-direction, the single quantum path control is realized and the supercontinuum spectra are obtained. Moreover, an isolated 110 as pulse can be obtained by superposing the harmonics from 130th to 180th order.
基金Supported by the National Natural Science Foundation of China under Grant No 61205103
文摘We propose a simple iterative algorithm based on a temporally movable phase modulation process to retrieve the weak temporal phase of laser pulses. This unambiguous method can be used to achieve a high accuracy and to simultaneously measure the weak temporal phase and temporal profile of pulses, which are almost transform- limited. A detailed analysis shows that this iterative method has valuable potential applications in the charac- terization of pulses with weak temporal phase.
文摘In the presented study, the laser butt-welding of Ti 6Al 4V is investigated using 2.2 kw CO2 laser. Ti 6Al 4V alloy has widespread application in various fields of industries including the medical, nuclear and aerospace. In this study, Response Surface Methodology (RSM) is employed to establish the design of experiments and to optimize the bead geometry. The relationships between the input laser-welding parameters (i.e. laser power, welding speed and focal point position) and the process responses (i.e. welded zone width, heat affected zone width, welded zone area, heat affected zone area and penetration depth) are investigated. The multi-response optimizations are used to optimize the welding process. The optimum welding conditions are identified in order to increase the productivity and minimize the total operating cost. The validation results demonstrate that the developed models are accurate with low percentages of error (less than 12.5%).
基金supported by the National Key Research and Development Program of China(No.2016YFA0401901)the National Natural Science Foundation of China(No.11405427)
文摘In this paper, we present an energy calibration method based on steep Compton edges of the laser Compton scattered(LCS) photon energy spectra. It performs consecutive energy calibration in the neighborhood of certain energy, hence improves calibration precision in the energy region. It can also achieve direct calibration at high energy region(several MeV) where detectors can only be calibrated by extrapolation in conventional methods.These make it suitable for detectors that need wide-range energy calibration with high precision. The effects of systematic uncertainties on accuracy of this calibration method are studied by simulation, using the design parameters of a LCS device—SINAP Ⅲ. The results show that the SINAP Ⅲ device is able to perform energy calibration work over the energy region of 25–740 keV. The precision of calibration is better than 1.6% from 25 to 300 keV and is better than 0.5% from 300 to 740 keV.
文摘A three-dimensional finite element thermal model in direct metal laser sintering(DMLS) including the effect of powder-to-solid transition were established to predict sintering zone, which benefited the determination of suitable process parameters in DMLS. The nonlinear transient model of the metals thermal conductivity for powder-to-solid transition was developed. The model uses solid thermal properties of material in liquid-phase zone, transitional ones in sintering or sintered zone and powder ones in unsintered zones of powder bed to predict, respectively. Sintering zone boundary was estimated by maximum temperature history profile. Experiments were carried out using multi-component Cu-based metal powder. Compared experimental and predicted results, the mean error of sintering depth and width are 7.8% and 14.4%, respectively, which confirms the accuracy of the FEM prediction.
文摘Laser surface hardening becomes one of the most effective techniques used to enhance wear and fatigue resistance of mechanical parts. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To adequately exploit the benefits presented by the laser heating method, it is necessary to develop a comprehensive strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive approach used to build a simplified model for predicting the hardness profile. A finite element method based prediction model for AISI 4340 steel is investigated. A circular shape with a Gaussian distribution is used for modeling the laser heat source. COMSOL MULTIPHYSICS software is used to solve the heat transfer equations, estimate the temperature distribution in the part and consequently predict the hardness profile. A commercial 3 kW Nd:Yag laser system is combined to a structured experimental design and confirmed statistical analysis tools for conducting the experimental calibration and validation of the model. The results reveal that the model can effectively lead to a consistent and accurate prediction of the hardness profile characteristics under variable hardening parameters and conditions. The results show great concordance between predicted and measured values for the dimensions of hardened and melted zones.
基金the National Natural Science Foundation of China and the Chinese Academy of Sciences
文摘A numerical analysis was carried out to study the moving boundary problem in the physical process of pulsed Nd-YAG laser surface melting prior to vaporization.The enthalpy method was applied to solve this two-phase axisymmetrical mehing problem.Computational results of tempera ture fields were obtained,which provide useful information to practical lair treatment processing. The validity of enthalpy method in solving such problems is presented.
文摘In order to achieve high-accuracy measurement of radius of curvature of optical sphere, ultra-high accuracy radius of curvature testing device is developed by dual-frequency laser interferometer and Fizeau interferometer based on cat’s eye and confocal method. Through analyzing the error source models of radius of curvature testing, optical configuration of the testing device has been optimized. Precise environment control and real-time monitoring system is also established to reduce the errors caused by environment. Through the above processes, the radius of curvature measurement relative accuracy is better than 2 ppm. One optical sphere, R88.5 mm, test aperture 59 mm, has been tested. Testing result is 88499.465 ± 0.176 μm, meeting the design requirement. The method has high accuracy and practical advantages.
文摘The Laser Induced Breakdown Spectroscopy (LIBS) is a fast, non-contact, no sample preparation analytic technology;it is very suitable for on-line analysis of alloy composition. In the copper smelting industry, analysis and control of the copper alloy concentration affect the quality of the products greatly, so LIBS is an efficient quantitative analysis tech- nology in the copper smelting industry. But for the lead brass, the components of Pb, Al and Ni elements are very low and the atomic emission lines are easily submerged under copper complex characteristic spectral lines because of the matrix effects. So it is difficult to get the online quantitative result of these important elements. In this paper, both the partial least squares (PLS) method and the calibration curve (CC) method are used to quantitatively analyze the laser induced breakdown spectroscopy data which is obtained from the standard lead brass alloy samples. Both the major and trace elements were quantitatively analyzed. By comparing the two results of the different calibration method, some useful results were obtained: both for major and trace elements, the PLS method was better than the CC method in quantitative analysis. And the regression coefficient of PLS method is compared with the original spectral data with background interference to explain the advantage of the PLS method in the LIBS quantitative analysis. Results proved that the PLS method used in laser induced breakdown spectroscopy was suitable for simultaneous quantitative analysis of different content elements in copper smelting industry.
文摘We report spectroscopic studies on plasma electron number density of laser-induced plasma produced by ns-Nd:YAG laser light pulses on an aluminum sample in air at atmospheric pressure. The effect of different laser energy and the effect of different laser wavelengths were compared. The experimentally observed line profiles of neutral aluminum have been used to extract the excitation temperature using the Boltzmann plot method, whereas the electron number density has been determined from the Stark broadened as well as using the Saha-Boltzmann equation (SBE). Each approach was also carried out by using the AI emission line and Mg emission lines. It was observed that the,SBE method generated a little higher electron number density value than the Stark broadening, method, but within the experimental uncertainty range. Comparisons of Ne determined by the two methods show the presence of a linear relation which is independent of laser energy or laser wavelength. These results show the applicability of the SBE method for Are determination, especially when the system does not have any pure emission lines whose electron impact factor is known, Also use of Mg lines gives superior results than Al lines.