The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated The influences of the temperature and time of solution treatment and aging...The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated The influences of the temperature and time of solution treatment and aging treatment were analyzed. The results show that the microstructure of LSFed samples consists of Widmanstatten α laths and a little acicular in columnar prior β grains with an average grain width of 300 μm, which grow epitaxiaUy from the substrate along the deposition direction (27). Solution treatment had an important effect on the width, aspect ratio, and volmne fraction of primary and secondary a laths, and aging treatment mainly affects the aspect ratio and volume fraction of primary α laths and the width and volume fraction of secondary a laths. Globular a phase was first observed in LSFed samples when the samples were heat treated with solution treatment (950℃, 8 h/air cooling (AC)) or with solution treatment (950℃, 1 h/AC) and aging treatment (550℃, above 8 h/AC), respectively. The coarsening and globularization mechanisms of a phase in LSFed Ti-6Al-4V alloy during heat treatment were presented. To obtain good integrated mechanical properties for LSFed Ti-6Al-4V alloys, an optimized heat treatment regimen was suggested.展开更多
A series of single track clads of Inconel 625 alloy were fabricated by laser solid forming.To achieve the high dimensional accuracy and excellent mechanical properties,the effect of processing parameters on the geomet...A series of single track clads of Inconel 625 alloy were fabricated by laser solid forming.To achieve the high dimensional accuracy and excellent mechanical properties,the effect of processing parameters on the geometry,the formation of Laves phase and the residual stress was investigated.The results show that laser power and scanning speed had a dramatical influence on the width and height of single-track clads.According to the columnar to equiaxed transition curve of Inconel 625,the grain morphology can be predicted during the LSF process.With the increasing laser power and the decreasing scanning speed,the segregation degree of Si,Nb,Mo,the volume fraction and size of Laves phase increased.Vickers indentation was used to demonstrate that optimizing processing parameter can achieve the minimum residual tensile stress.展开更多
Morphology evolution of prior β grains of laser solid forming (LSF) Ti-xAl-yV (x 11,y 20) alloys from blended elemental powders is investigated. The formation mechanism of grain morphology is revealed by incorpor...Morphology evolution of prior β grains of laser solid forming (LSF) Ti-xAl-yV (x 11,y 20) alloys from blended elemental powders is investigated. The formation mechanism of grain morphology is revealed by incorporating columnar to equiaxed transition (CET) mechanism during solidification. The morphology of prior β grains of LSF Ti-6Al-yV changes from columnar to equiaxed grains with increasing element V content from 4 to 20 wt.-%. This agrees well with CET theoretical prediction. Likewise, the grain morphology of LSF Ti-xAl-2V from blended elemental powders changes from large columnar to small equiaxed with increasing Al content from 2 to 11 wt.-%. The macro-morphologies of LSF Ti-8Al-2V and Ti-11Al-2V from blended elemental powders do not agree with CET predictions. This is caused by the increased disturbance effects of mixing enthalpy with increasing Al content, generated in the alloying process of Ti, Al, and V in the molten pool.展开更多
Laser solid forming(LSF)technology can be used to rapidly manufacture and repair high-strength steel parts with superior performance,but the value of the heat input during operation is difficult to quantify,which has ...Laser solid forming(LSF)technology can be used to rapidly manufacture and repair high-strength steel parts with superior performance,but the value of the heat input during operation is difficult to quantify,which has a substantial impact on the microstructure and mechanical properties of the parts.A promising method to improve the forming efficiency and quality of LSFed parts is to accurately control the heat input and explore its relationship with the microstructure and mechanical properties.To remove the interference of other variables from the experiment,the dimensionless heat input Q;^(∗)was introduced.The Q^(∗)values were designed in advance to calculate the experimental parameters used to perform the LSF experiment.The microstructure was observed at different regions of the sample,and its mechanical properties were analyzed.From the results,the following conclusions were drawn.The Q;^(∗)value was directly related to the cooling rate and heat accumulation in the top structure,leading to the formation of different microstructures;it also modified the original structure at the bottom,affecting the subsequent thermal cycle and indirectly changing the tempered martensite morphology.The heat input also affected the mechanical properties of the sample.The hardness of the stable zone decreased with increasing Q;^(∗)value,and the lowest value was 190 HV.Similarly,the tensile strength and yield strength of the LSFed samples decreased considerably with increasing Q;^(∗)value,and the lowest values were 735 and 604 MPa,respectively.Only the elongation and reduction in the area increased after a slight decrease.The Q;^(∗)value had a significant effect on heat treatment.When Q;^(∗)=2.9,the increase in tensile strength and yield strength after heat treatment was the largest(29%and 44%,respectively).展开更多
Inconel 718 superalloys deposited by laser solid forming (LSF) were heat treated with solution treatment,intermediate heat treatment (IHT) and two-stage aging treatment in sequence (SITA heat treatment).The effe...Inconel 718 superalloys deposited by laser solid forming (LSF) were heat treated with solution treatment,intermediate heat treatment (IHT) and two-stage aging treatment in sequence (SITA heat treatment).The effect of IHT temperature on microstructure,tensile property and notch sensitivity of LSFed Inconel 718 superalloy at 500 ℃ were investigated.As-deposited columnar grains have transformed to equiaxed grains and the grains were refined due to the recrystallization during the SITA heat treatment.It is found that the size and amount of δ phase dispersed at grain boundaries decreased with the increasing of IHT temperature,and δ phase disappeared when the IHT temperature reached 1 020 ℃.The ultimate tensile strength (UTS) and yield strength (YS) of smooth samples increased to a maximum when the IHT temperature reached 980 ℃ and then decreased slightly to a minimum when the IHT temperature was 1 000 ℃,and followed by slight increasing again till the IHT temperature reached 1 020 ℃,resulted from the competition of precipitation strengthening effect of γ″ and γ' phase and the grain boundary weakening effect caused by the gradual disappearance of δ phase with increasing the IHT temperature.The notch sensitivity factor (qe) decreased but still greater than 1 as the IHT temperature increased,which is attributed to the decrease of the size and amount of δ precipitation.展开更多
Hot compressive experiments of the laser solid formed(LSFed)TC4 titanium alloy were conducted at a wide temperature range of 650-950℃and strain rate of 0.01-10 s^(-1).The Arrheniustype constitutive models of the LSFe...Hot compressive experiments of the laser solid formed(LSFed)TC4 titanium alloy were conducted at a wide temperature range of 650-950℃and strain rate of 0.01-10 s^(-1).The Arrheniustype constitutive models of the LSFed TC4 alloy were established at the temperature range of 800-950℃and of 650-800℃,respectively.The average relative error between the predicted stresses and experimental values in those two temperature ranges are 10.4%and 8.3%,respectively,indicating that the prediction models constructed in this paper are in a good agreement with experimental data.Processing maps were established by the principle of dynamic materials modeling on the basis of the data achieved from the hot compression experiments.The processing parameters corresponding to the stable and unstable regions of material deformation can be determined from the processing maps.The microstructure evolution of the stable and unstable regions of the samples after tests were observed.Finally,the effect of hot compressive parameters on the microstructure were investigated to research the dynamic recrystallization and the texture of the deformed LSFed TC4 alloy.展开更多
基金supported by the Program for New Century Excellent Talents in Universities of China (No.NCET-06-0879)the National Natural Science Foundation of China (No.50331010)+2 种基金the Northwestern Polytechnical University Foundation of Fundamental Research (No.NPU-FFR-JC200808)the National Basic Research Program of China (No.2007CB613800)the Program of Introducing Talents of Discipline to Universities,China (No.08040)
文摘The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated The influences of the temperature and time of solution treatment and aging treatment were analyzed. The results show that the microstructure of LSFed samples consists of Widmanstatten α laths and a little acicular in columnar prior β grains with an average grain width of 300 μm, which grow epitaxiaUy from the substrate along the deposition direction (27). Solution treatment had an important effect on the width, aspect ratio, and volmne fraction of primary and secondary a laths, and aging treatment mainly affects the aspect ratio and volume fraction of primary α laths and the width and volume fraction of secondary a laths. Globular a phase was first observed in LSFed samples when the samples were heat treated with solution treatment (950℃, 8 h/air cooling (AC)) or with solution treatment (950℃, 1 h/AC) and aging treatment (550℃, above 8 h/AC), respectively. The coarsening and globularization mechanisms of a phase in LSFed Ti-6Al-4V alloy during heat treatment were presented. To obtain good integrated mechanical properties for LSFed Ti-6Al-4V alloys, an optimized heat treatment regimen was suggested.
基金Project(2018YFB1105804)supported by the National Key R&D Program of ChinaProject(2020-TS-06)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China。
文摘A series of single track clads of Inconel 625 alloy were fabricated by laser solid forming.To achieve the high dimensional accuracy and excellent mechanical properties,the effect of processing parameters on the geometry,the formation of Laves phase and the residual stress was investigated.The results show that laser power and scanning speed had a dramatical influence on the width and height of single-track clads.According to the columnar to equiaxed transition curve of Inconel 625,the grain morphology can be predicted during the LSF process.With the increasing laser power and the decreasing scanning speed,the segregation degree of Si,Nb,Mo,the volume fraction and size of Laves phase increased.Vickers indentation was used to demonstrate that optimizing processing parameter can achieve the minimum residual tensile stress.
基金supported by the State Key Laboratory of Solidification Processing in NWPU (Nos.SKLSP201102 and 06-BZ-2010)Lthe China Postdoc-toral Science Foundation (No.20100470040)the National Natural Science Foundation of China (No.50871089)
文摘Morphology evolution of prior β grains of laser solid forming (LSF) Ti-xAl-yV (x 11,y 20) alloys from blended elemental powders is investigated. The formation mechanism of grain morphology is revealed by incorporating columnar to equiaxed transition (CET) mechanism during solidification. The morphology of prior β grains of LSF Ti-6Al-yV changes from columnar to equiaxed grains with increasing element V content from 4 to 20 wt.-%. This agrees well with CET theoretical prediction. Likewise, the grain morphology of LSF Ti-xAl-2V from blended elemental powders changes from large columnar to small equiaxed with increasing Al content from 2 to 11 wt.-%. The macro-morphologies of LSF Ti-8Al-2V and Ti-11Al-2V from blended elemental powders do not agree with CET predictions. This is caused by the increased disturbance effects of mixing enthalpy with increasing Al content, generated in the alloying process of Ti, Al, and V in the molten pool.
基金funded by the National Key R&D Program of China(No.2018YFB1105804)the National Natural Science Foundation of China(No.51865036)+1 种基金the Natural Science Foundation of Jiangxi Province(No.20202BABL204039)the National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology(No.EG201980450)
文摘Laser solid forming(LSF)technology can be used to rapidly manufacture and repair high-strength steel parts with superior performance,but the value of the heat input during operation is difficult to quantify,which has a substantial impact on the microstructure and mechanical properties of the parts.A promising method to improve the forming efficiency and quality of LSFed parts is to accurately control the heat input and explore its relationship with the microstructure and mechanical properties.To remove the interference of other variables from the experiment,the dimensionless heat input Q;^(∗)was introduced.The Q^(∗)values were designed in advance to calculate the experimental parameters used to perform the LSF experiment.The microstructure was observed at different regions of the sample,and its mechanical properties were analyzed.From the results,the following conclusions were drawn.The Q;^(∗)value was directly related to the cooling rate and heat accumulation in the top structure,leading to the formation of different microstructures;it also modified the original structure at the bottom,affecting the subsequent thermal cycle and indirectly changing the tempered martensite morphology.The heat input also affected the mechanical properties of the sample.The hardness of the stable zone decreased with increasing Q;^(∗)value,and the lowest value was 190 HV.Similarly,the tensile strength and yield strength of the LSFed samples decreased considerably with increasing Q;^(∗)value,and the lowest values were 735 and 604 MPa,respectively.Only the elongation and reduction in the area increased after a slight decrease.The Q;^(∗)value had a significant effect on heat treatment.When Q;^(∗)=2.9,the increase in tensile strength and yield strength after heat treatment was the largest(29%and 44%,respectively).
基金Funded by the Program for New Century Excellent Talents in University of China (No.NCET-06-0879)the National Natural Science Foundation of China (NSFC) (No.50971102)+2 种基金NPU Foundation for Fundamental Research(No.NPU-FFR-JC200808)the Fund of the State Key Laboratory of Solidification Processing (NPU) (Nos.16-TZ-2007 and 39-QZ-2009)supported by the Program of Introducing Talents of Discipline to Universities (No.08040)
文摘Inconel 718 superalloys deposited by laser solid forming (LSF) were heat treated with solution treatment,intermediate heat treatment (IHT) and two-stage aging treatment in sequence (SITA heat treatment).The effect of IHT temperature on microstructure,tensile property and notch sensitivity of LSFed Inconel 718 superalloy at 500 ℃ were investigated.As-deposited columnar grains have transformed to equiaxed grains and the grains were refined due to the recrystallization during the SITA heat treatment.It is found that the size and amount of δ phase dispersed at grain boundaries decreased with the increasing of IHT temperature,and δ phase disappeared when the IHT temperature reached 1 020 ℃.The ultimate tensile strength (UTS) and yield strength (YS) of smooth samples increased to a maximum when the IHT temperature reached 980 ℃ and then decreased slightly to a minimum when the IHT temperature was 1 000 ℃,and followed by slight increasing again till the IHT temperature reached 1 020 ℃,resulted from the competition of precipitation strengthening effect of γ″ and γ' phase and the grain boundary weakening effect caused by the gradual disappearance of δ phase with increasing the IHT temperature.The notch sensitivity factor (qe) decreased but still greater than 1 as the IHT temperature increased,which is attributed to the decrease of the size and amount of δ precipitation.
基金the National Key Research and Development Program of China(No.2016YFB1100104)the National Natural Science Foundation of China(No.51875470)+1 种基金the State Key Laboratory of Solidification Processing(NPU,China)(2019-QZ-01)the financial support from the fund of SAST(SAST2016043)。
文摘Hot compressive experiments of the laser solid formed(LSFed)TC4 titanium alloy were conducted at a wide temperature range of 650-950℃and strain rate of 0.01-10 s^(-1).The Arrheniustype constitutive models of the LSFed TC4 alloy were established at the temperature range of 800-950℃and of 650-800℃,respectively.The average relative error between the predicted stresses and experimental values in those two temperature ranges are 10.4%and 8.3%,respectively,indicating that the prediction models constructed in this paper are in a good agreement with experimental data.Processing maps were established by the principle of dynamic materials modeling on the basis of the data achieved from the hot compression experiments.The processing parameters corresponding to the stable and unstable regions of material deformation can be determined from the processing maps.The microstructure evolution of the stable and unstable regions of the samples after tests were observed.Finally,the effect of hot compressive parameters on the microstructure were investigated to research the dynamic recrystallization and the texture of the deformed LSFed TC4 alloy.