期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Heat-treated microstructure and mechanical properties of laser solid forming Ti-6Al-4V alloy 被引量:22
1
作者 ZHANG Shuangyin LIN Xin CHEN Jing HUANG Weidong 《Rare Metals》 SCIE EI CAS CSCD 2009年第6期537-544,共8页
The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated The influences of the temperature and time of solution treatment and aging... The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated The influences of the temperature and time of solution treatment and aging treatment were analyzed. The results show that the microstructure of LSFed samples consists of Widmanstatten α laths and a little acicular in columnar prior β grains with an average grain width of 300 μm, which grow epitaxiaUy from the substrate along the deposition direction (27). Solution treatment had an important effect on the width, aspect ratio, and volmne fraction of primary and secondary a laths, and aging treatment mainly affects the aspect ratio and volume fraction of primary α laths and the width and volume fraction of secondary a laths. Globular a phase was first observed in LSFed samples when the samples were heat treated with solution treatment (950℃, 8 h/air cooling (AC)) or with solution treatment (950℃, 1 h/AC) and aging treatment (550℃, above 8 h/AC), respectively. The coarsening and globularization mechanisms of a phase in LSFed Ti-6Al-4V alloy during heat treatment were presented. To obtain good integrated mechanical properties for LSFed Ti-6Al-4V alloys, an optimized heat treatment regimen was suggested. 展开更多
关键词 metal material Ti-6Al-4V alloy laser solid forming MICROSTRUCTURE mechanical properties heat treatment
下载PDF
Influence of processing parameters on deposition characteristics of Inconel 625 superalloy fabricated by laser solid forming 被引量:2
2
作者 YANG Hai-ou ZHANG Shu-ya +2 位作者 LIN Xin HU Yun-long HUANG Wei-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1003-1014,共12页
A series of single track clads of Inconel 625 alloy were fabricated by laser solid forming.To achieve the high dimensional accuracy and excellent mechanical properties,the effect of processing parameters on the geomet... A series of single track clads of Inconel 625 alloy were fabricated by laser solid forming.To achieve the high dimensional accuracy and excellent mechanical properties,the effect of processing parameters on the geometry,the formation of Laves phase and the residual stress was investigated.The results show that laser power and scanning speed had a dramatical influence on the width and height of single-track clads.According to the columnar to equiaxed transition curve of Inconel 625,the grain morphology can be predicted during the LSF process.With the increasing laser power and the decreasing scanning speed,the segregation degree of Si,Nb,Mo,the volume fraction and size of Laves phase increased.Vickers indentation was used to demonstrate that optimizing processing parameter can achieve the minimum residual tensile stress. 展开更多
关键词 single track clads Inconel 625 alloy Laves phase residual stress laser solid forming
下载PDF
Microstructure evolution of laser solid forming of Ti-Al-V ternary system alloys from blended elemental powders 被引量:4
3
作者 谭华 张凤英 +2 位作者 陈静 林鑫 黄卫东 《Chinese Optics Letters》 SCIE EI CAS CSCD 2011年第5期52-55,共4页
Morphology evolution of prior β grains of laser solid forming (LSF) Ti-xAl-yV (x 11,y 20) alloys from blended elemental powders is investigated. The formation mechanism of grain morphology is revealed by incorpor... Morphology evolution of prior β grains of laser solid forming (LSF) Ti-xAl-yV (x 11,y 20) alloys from blended elemental powders is investigated. The formation mechanism of grain morphology is revealed by incorporating columnar to equiaxed transition (CET) mechanism during solidification. The morphology of prior β grains of LSF Ti-6Al-yV changes from columnar to equiaxed grains with increasing element V content from 4 to 20 wt.-%. This agrees well with CET theoretical prediction. Likewise, the grain morphology of LSF Ti-xAl-2V from blended elemental powders changes from large columnar to small equiaxed with increasing Al content from 2 to 11 wt.-%. The macro-morphologies of LSF Ti-8Al-2V and Ti-11Al-2V from blended elemental powders do not agree with CET predictions. This is caused by the increased disturbance effects of mixing enthalpy with increasing Al content, generated in the alloying process of Ti, Al, and V in the molten pool. 展开更多
关键词 Ti Al Microstructure evolution of laser solid forming of Ti-Al-V ternary system alloys from blended elemental powders
原文传递
Effect of dimensionless heat input during laser solid forming of high-strength steel
4
作者 Chunping Huang Renyu Liang +2 位作者 Fenggang Liu Haiou Yang Xin Lin 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第4期127-137,共11页
Laser solid forming(LSF)technology can be used to rapidly manufacture and repair high-strength steel parts with superior performance,but the value of the heat input during operation is difficult to quantify,which has ... Laser solid forming(LSF)technology can be used to rapidly manufacture and repair high-strength steel parts with superior performance,but the value of the heat input during operation is difficult to quantify,which has a substantial impact on the microstructure and mechanical properties of the parts.A promising method to improve the forming efficiency and quality of LSFed parts is to accurately control the heat input and explore its relationship with the microstructure and mechanical properties.To remove the interference of other variables from the experiment,the dimensionless heat input Q;^(∗)was introduced.The Q^(∗)values were designed in advance to calculate the experimental parameters used to perform the LSF experiment.The microstructure was observed at different regions of the sample,and its mechanical properties were analyzed.From the results,the following conclusions were drawn.The Q;^(∗)value was directly related to the cooling rate and heat accumulation in the top structure,leading to the formation of different microstructures;it also modified the original structure at the bottom,affecting the subsequent thermal cycle and indirectly changing the tempered martensite morphology.The heat input also affected the mechanical properties of the sample.The hardness of the stable zone decreased with increasing Q;^(∗)value,and the lowest value was 190 HV.Similarly,the tensile strength and yield strength of the LSFed samples decreased considerably with increasing Q;^(∗)value,and the lowest values were 735 and 604 MPa,respectively.Only the elongation and reduction in the area increased after a slight decrease.The Q;^(∗)value had a significant effect on heat treatment.When Q;^(∗)=2.9,the increase in tensile strength and yield strength after heat treatment was the largest(29%and 44%,respectively). 展开更多
关键词 Dimensionless heat input laser solid forming High-strength steel MICROSTRUCTURE Mechanical property
原文传递
Effect of Intermediate Heat Treatment Temperature on Microstructure and Notch Sensitivity of Laser Solid Formed Inconel 718 Superalloy 被引量:4
5
作者 刘奋成 黄卫东 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第5期908-913,共6页
Inconel 718 superalloys deposited by laser solid forming (LSF) were heat treated with solution treatment,intermediate heat treatment (IHT) and two-stage aging treatment in sequence (SITA heat treatment).The effe... Inconel 718 superalloys deposited by laser solid forming (LSF) were heat treated with solution treatment,intermediate heat treatment (IHT) and two-stage aging treatment in sequence (SITA heat treatment).The effect of IHT temperature on microstructure,tensile property and notch sensitivity of LSFed Inconel 718 superalloy at 500 ℃ were investigated.As-deposited columnar grains have transformed to equiaxed grains and the grains were refined due to the recrystallization during the SITA heat treatment.It is found that the size and amount of δ phase dispersed at grain boundaries decreased with the increasing of IHT temperature,and δ phase disappeared when the IHT temperature reached 1 020 ℃.The ultimate tensile strength (UTS) and yield strength (YS) of smooth samples increased to a maximum when the IHT temperature reached 980 ℃ and then decreased slightly to a minimum when the IHT temperature was 1 000 ℃,and followed by slight increasing again till the IHT temperature reached 1 020 ℃,resulted from the competition of precipitation strengthening effect of γ″ and γ' phase and the grain boundary weakening effect caused by the gradual disappearance of δ phase with increasing the IHT temperature.The notch sensitivity factor (qe) decreased but still greater than 1 as the IHT temperature increased,which is attributed to the decrease of the size and amount of δ precipitation. 展开更多
关键词 notch sensitivity Inconel 718 laser solid forming intermediate heat treatment SUPERALLOY
下载PDF
Hot deformation behavior and microstructure evolution of the laser solid formed TC4 titanium alloy 被引量:8
6
作者 Xiawei YANG Yanying WANG +4 位作者 Xiurong DONG Chong PENG Baijin JI Yaxin XU Wenya LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期163-182,共20页
Hot compressive experiments of the laser solid formed(LSFed)TC4 titanium alloy were conducted at a wide temperature range of 650-950℃and strain rate of 0.01-10 s^(-1).The Arrheniustype constitutive models of the LSFe... Hot compressive experiments of the laser solid formed(LSFed)TC4 titanium alloy were conducted at a wide temperature range of 650-950℃and strain rate of 0.01-10 s^(-1).The Arrheniustype constitutive models of the LSFed TC4 alloy were established at the temperature range of 800-950℃and of 650-800℃,respectively.The average relative error between the predicted stresses and experimental values in those two temperature ranges are 10.4%and 8.3%,respectively,indicating that the prediction models constructed in this paper are in a good agreement with experimental data.Processing maps were established by the principle of dynamic materials modeling on the basis of the data achieved from the hot compression experiments.The processing parameters corresponding to the stable and unstable regions of material deformation can be determined from the processing maps.The microstructure evolution of the stable and unstable regions of the samples after tests were observed.Finally,the effect of hot compressive parameters on the microstructure were investigated to research the dynamic recrystallization and the texture of the deformed LSFed TC4 alloy. 展开更多
关键词 laser solid formed TC4 Constitutive models Processing maps Unstable regions Microstructure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部