Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed ga...Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system basedon optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. Thesystem can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed opticalpath. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequencydivision multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneouslyachieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used asthe frequency calibration source, which guarantees the measurement accuracy. The test samples involve H13C14N, C_(2)H_(2)and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that themeasurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 m, respectively. The schemeoffers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize theidentification of multi-gas components and the high-precision inversion of absorption lines under different environments.The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gassensing applications.展开更多
The absolute frequency of 87Rb 5S1/2 (F=2)→5D5/2 (F" = 4) two-photon transition at 778nm is measured in an accuracy of 44kHz. A home-made erbium-doped fiber laser frequency comb with frequency stability of 5.0 ...The absolute frequency of 87Rb 5S1/2 (F=2)→5D5/2 (F" = 4) two-photon transition at 778nm is measured in an accuracy of 44kHz. A home-made erbium-doped fiber laser frequency comb with frequency stability of 5.0 × 10-13@1 s is employed for the light source. By using a periodically poled lithium niobate, the femtosecond pulse operating in 1556 nm is frequency-doubled to 778 nm to obtain the direct two-photon transition spectroscopy of thermal rubidium vapor. Through sweeping the carrier envelope offset frequency (fceo), the 5S1/2 (F=2)→5D5/2 (F" = 4) two-photon transition line is clearly resolved and its absolute frequency is determined via the peak-finding of the fitting curve. After the frequency correction, the measured result agrees well with the previous experiment on this transition. The entire potential candidate of optical frequency standard for system configuration is compact and robust, providing a telecommunication applications.展开更多
The high precision two-photon excitation measurements for 5S1/2 (Fg = 2) to 5D5/2 (Fe = 4 to 1) of 87Rb are per- formed by using an optical frequency comb. The two counter-propagating femtosecond pulses (5S1/2 →...The high precision two-photon excitation measurements for 5S1/2 (Fg = 2) to 5D5/2 (Fe = 4 to 1) of 87Rb are per- formed by using an optical frequency comb. The two counter-propagating femtosecond pulses (5S1/2 →5P3/2 at 780 nm, and 5P3/2→5D5/2 at 776 nm) act on 87Rb vapor, and the Doppler broadened background signal is effectively eliminated. The temperature and power dependences of the two-photon spectrum are studied in this paper.展开更多
Direct-comb spectroscopy techniques uses optical frequency combs(OFCs)as spectroscopic light source.They deliver high sensitivity,high frequency resolution and precision in a broad spectral range.Due to these features...Direct-comb spectroscopy techniques uses optical frequency combs(OFCs)as spectroscopic light source.They deliver high sensitivity,high frequency resolution and precision in a broad spectral range.Due to these features,the field has burgeoned in recent years.In this work we constructed an OFC-based cavity-enhanced Fourier-transform spectrometer in the nearinfrared region and used it for a line-shape study of rovibrational transitions of CO perturbed by Ar.The highly sensitive measurements spanned the wavenumber range from 6270 cm^-1 to 6410 cm^-1,which covered both P and R branch of the second overtone band of CO.The spectrometer delivers high-resolution surpassing the Fourier-transform resolution limit determined by interferogram length,successfully removing ringing and broadening effects caused by instrumental line shape function.The instrumental-line-shape-free method and high signal-to-noise ratio in the measurement allowed us to observe collisional effects beyond those described by the Voigt profile.We retrieved collisional line-shape parameters by fitting the speed-dependent Voigt profile and found good agreement with the values given by precise cavity ring-down spectroscopy measurements that used a continuous-wave laser referenced to a stabilized OFC.The results demonstrate that OFC-based cavity-enhanced Fouriertransform spectroscopy is a strong tool for accurate line-shape studies that will be crucial for future spectral databases.展开更多
Optical frequency comb with evenly spaced lines over a broad bandwidth has revolutionized the fields of optical metrology and spectroscopy.Here,we propose a fast interleaved dual-comb spectroscopy with sub-femtometer-...Optical frequency comb with evenly spaced lines over a broad bandwidth has revolutionized the fields of optical metrology and spectroscopy.Here,we propose a fast interleaved dual-comb spectroscopy with sub-femtometer-resolution and absolute frequency,in which two electro-optic frequency combs are swept.Electrically-modulated stabilized laser enables ultrahigh resolution of 0.16 fm(or 20 k Hz in optical frequency)and single-shot measurement in 90 ms.Total 20 million points are recorded spanning 3.2 nm(or 400 GHz)bandwidth,corresponding to a spectral sampling rate of 2.5×10^(8)points/s under Nyquist-limitation.Besides,considering the trade-off between the measurement time and spectral resolution,a fast single-shot measurement is also realized in 1.6 ms with 8 fm(or 1 MHz)resolution.We demonstrate the 25-averaged result with 30.6 d B spectral measurement signal-to-noise ratio(SNR)by reducing the filter bandwidth in demodulation.The results show great prospect for precise measurement with flexibly fast refresh time,high spectral resolution,and high SNR.展开更多
Precision measurement of the 4s2 S1/2-3d2 D5/2 clock transition based on 40Ca+ ion at 729 nm is reported. A single 40Ca+ ion is trapped and laser-cooled in a ring Paul trap, and the storage time for the ion is more ...Precision measurement of the 4s2 S1/2-3d2 D5/2 clock transition based on 40Ca+ ion at 729 nm is reported. A single 40Ca+ ion is trapped and laser-cooled in a ring Paul trap, and the storage time for the ion is more than one month. The linewidth of a 729 nm laser is reduced to about 1 Hz by locking to a super cavity for longer than one month uninterruptedly. The overall systematic uncertainty of the clock transition is evaluated to be better than 6.5 ×10^-16. The absolute frequency of the clock transition is measured at the 10^-15 level by using an optical frequency comb referenced to a hydrogen maser which is calibrated to the SI second through the global positioning system (GPS), The frequency value is 411 042 129 776 393.0(1.6) Hz with the correction of the systematic shifts. In order to carry out the comparison of two 40Ca+ optical frequency standards, another similar 40Ca+ optical frequency standard is constructed. Two optical frequency standards exhibit stabilities of 1 × 10^-14 T-1/2 with 3 days of averaging. Moreover, two additional precision measurements based on the single trapped 40Ca+ ion are carried out. One is the 3d2Ds/2 state lifetime measurement, and our result of 1174(10) ms agrees well with the results reported in [Phys. Rev. A 62 032503 (2000)] and [Phys. Rev. A 71 032504 (2005)]. The other one is magic wavelengths for the 4s2S1/2-3d2Ds/2 clock transition; λ |mj|=1/2= 395.7992(7) nm and λ|m|=3/2 = 395.7990(7) nm are reported, and it is the first time that two magic wavelengths for the 40Ca+ clock-transition have been reported.展开更多
CH3 internal rotation is one of the typical large amplitude motions in polyatomic molecules,the spectral analysis and theoretical calculations of which,were developed by Li-Hong Xu and Jon Hougen.We observed a Doppler...CH3 internal rotation is one of the typical large amplitude motions in polyatomic molecules,the spectral analysis and theoretical calculations of which,were developed by Li-Hong Xu and Jon Hougen.We observed a Doppler-free high-resolution and high-precision spectrum of 9-methylanthracene(9MA)by using the collimated supersonic jet and optical frequency comb techniques.The potential energy curve of CH3 internal rotation is expressed by a six-fold symmetric sinusoidal function.It was previously shown that the barrier height(V6)of 9MA-d12 was considerably smaller than that of 9MA-h12[M.Baba,et al.,J.Phys.Chem.A 113,2366(2009)].We performed ab initio theoretical calculations of the multicomponent molecular orbital method.The barrier reduction by deuterium substitution was partly attributed to the difference between the wave functions of H and D atomic nuclei.展开更多
瑞典皇家科学院决定,授予路易·格劳伯(Roy J Glauber)、约翰·霍尔(John L Hall)和提阿多·汉斯(Theodor W Hnsch)2005年度的诺贝尔物理学奖。格劳伯是因为他在光相干的量子理论方面的贡献,霍尔和汉斯则是因为他们在发展...瑞典皇家科学院决定,授予路易·格劳伯(Roy J Glauber)、约翰·霍尔(John L Hall)和提阿多·汉斯(Theodor W Hnsch)2005年度的诺贝尔物理学奖。格劳伯是因为他在光相干的量子理论方面的贡献,霍尔和汉斯则是因为他们在发展激光精密光谱学,包括光频梳(optical frequency comb)技术方面的贡献,而分别获此殊荣的。按历史进程简单评述了现代量子光学的发端,给出了现代量子光学的内容概要,较详细地介绍了汉斯和霍尔是如何发展光频梳技术以精确测量光频的。展开更多
基金the National Natural Science Foun-dation of China(Grant No.52375546)the National Key Research and Development Program of China(Grant No.2022YFF0705701).
文摘Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system basedon optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. Thesystem can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed opticalpath. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequencydivision multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneouslyachieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used asthe frequency calibration source, which guarantees the measurement accuracy. The test samples involve H13C14N, C_(2)H_(2)and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that themeasurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 m, respectively. The schemeoffers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize theidentification of multi-gas components and the high-precision inversion of absorption lines under different environments.The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gassensing applications.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61405002,91336103,10934010,61535001 and 61078026
文摘The absolute frequency of 87Rb 5S1/2 (F=2)→5D5/2 (F" = 4) two-photon transition at 778nm is measured in an accuracy of 44kHz. A home-made erbium-doped fiber laser frequency comb with frequency stability of 5.0 × 10-13@1 s is employed for the light source. By using a periodically poled lithium niobate, the femtosecond pulse operating in 1556 nm is frequency-doubled to 778 nm to obtain the direct two-photon transition spectroscopy of thermal rubidium vapor. Through sweeping the carrier envelope offset frequency (fceo), the 5S1/2 (F=2)→5D5/2 (F" = 4) two-photon transition line is clearly resolved and its absolute frequency is determined via the peak-finding of the fitting curve. After the frequency correction, the measured result agrees well with the previous experiment on this transition. The entire potential candidate of optical frequency standard for system configuration is compact and robust, providing a telecommunication applications.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921603)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT13076)+2 种基金the National Natural Science Foundation of China(Grant Nos.61378049 and 10934004)the International Science and Technology Cooperation Program of China(Grant No.2011DFA12490)the Natural Science Foundation of Shanxi Province,China(Grant No.2011011004)
文摘The high precision two-photon excitation measurements for 5S1/2 (Fg = 2) to 5D5/2 (Fe = 4 to 1) of 87Rb are per- formed by using an optical frequency comb. The two counter-propagating femtosecond pulses (5S1/2 →5P3/2 at 780 nm, and 5P3/2→5D5/2 at 776 nm) act on 87Rb vapor, and the Doppler broadened background signal is effectively eliminated. The temperature and power dependences of the two-photon spectrum are studied in this paper.
文摘Direct-comb spectroscopy techniques uses optical frequency combs(OFCs)as spectroscopic light source.They deliver high sensitivity,high frequency resolution and precision in a broad spectral range.Due to these features,the field has burgeoned in recent years.In this work we constructed an OFC-based cavity-enhanced Fourier-transform spectrometer in the nearinfrared region and used it for a line-shape study of rovibrational transitions of CO perturbed by Ar.The highly sensitive measurements spanned the wavenumber range from 6270 cm^-1 to 6410 cm^-1,which covered both P and R branch of the second overtone band of CO.The spectrometer delivers high-resolution surpassing the Fourier-transform resolution limit determined by interferogram length,successfully removing ringing and broadening effects caused by instrumental line shape function.The instrumental-line-shape-free method and high signal-to-noise ratio in the measurement allowed us to observe collisional effects beyond those described by the Voigt profile.We retrieved collisional line-shape parameters by fitting the speed-dependent Voigt profile and found good agreement with the values given by precise cavity ring-down spectroscopy measurements that used a continuous-wave laser referenced to a stabilized OFC.The results demonstrate that OFC-based cavity-enhanced Fouriertransform spectroscopy is a strong tool for accurate line-shape studies that will be crucial for future spectral databases.
基金funding from National Natural Science Foundation of China(NSFC)under Grant Nos.61775132,61735015,61620106015supported by the Major Key Project of Peng Cheng Laboratory(PCL)。
文摘Optical frequency comb with evenly spaced lines over a broad bandwidth has revolutionized the fields of optical metrology and spectroscopy.Here,we propose a fast interleaved dual-comb spectroscopy with sub-femtometer-resolution and absolute frequency,in which two electro-optic frequency combs are swept.Electrically-modulated stabilized laser enables ultrahigh resolution of 0.16 fm(or 20 k Hz in optical frequency)and single-shot measurement in 90 ms.Total 20 million points are recorded spanning 3.2 nm(or 400 GHz)bandwidth,corresponding to a spectral sampling rate of 2.5×10^(8)points/s under Nyquist-limitation.Besides,considering the trade-off between the measurement time and spectral resolution,a fast single-shot measurement is also realized in 1.6 ms with 8 fm(or 1 MHz)resolution.We demonstrate the 25-averaged result with 30.6 d B spectral measurement signal-to-noise ratio(SNR)by reducing the filter bandwidth in demodulation.The results show great prospect for precise measurement with flexibly fast refresh time,high spectral resolution,and high SNR.
基金supported by the National Basic Research Program of China(Grant Nos.2012CB821301 and 2005CB724502)the National Natural Science Foundation of China(Grant Nos.11474318,91336211,and 11034009)Chinese Academy of Sciences
文摘Precision measurement of the 4s2 S1/2-3d2 D5/2 clock transition based on 40Ca+ ion at 729 nm is reported. A single 40Ca+ ion is trapped and laser-cooled in a ring Paul trap, and the storage time for the ion is more than one month. The linewidth of a 729 nm laser is reduced to about 1 Hz by locking to a super cavity for longer than one month uninterruptedly. The overall systematic uncertainty of the clock transition is evaluated to be better than 6.5 ×10^-16. The absolute frequency of the clock transition is measured at the 10^-15 level by using an optical frequency comb referenced to a hydrogen maser which is calibrated to the SI second through the global positioning system (GPS), The frequency value is 411 042 129 776 393.0(1.6) Hz with the correction of the systematic shifts. In order to carry out the comparison of two 40Ca+ optical frequency standards, another similar 40Ca+ optical frequency standard is constructed. Two optical frequency standards exhibit stabilities of 1 × 10^-14 T-1/2 with 3 days of averaging. Moreover, two additional precision measurements based on the single trapped 40Ca+ ion are carried out. One is the 3d2Ds/2 state lifetime measurement, and our result of 1174(10) ms agrees well with the results reported in [Phys. Rev. A 62 032503 (2000)] and [Phys. Rev. A 71 032504 (2005)]. The other one is magic wavelengths for the 4s2S1/2-3d2Ds/2 clock transition; λ |mj|=1/2= 395.7992(7) nm and λ|m|=3/2 = 395.7990(7) nm are reported, and it is the first time that two magic wavelengths for the 40Ca+ clock-transition have been reported.
文摘CH3 internal rotation is one of the typical large amplitude motions in polyatomic molecules,the spectral analysis and theoretical calculations of which,were developed by Li-Hong Xu and Jon Hougen.We observed a Doppler-free high-resolution and high-precision spectrum of 9-methylanthracene(9MA)by using the collimated supersonic jet and optical frequency comb techniques.The potential energy curve of CH3 internal rotation is expressed by a six-fold symmetric sinusoidal function.It was previously shown that the barrier height(V6)of 9MA-d12 was considerably smaller than that of 9MA-h12[M.Baba,et al.,J.Phys.Chem.A 113,2366(2009)].We performed ab initio theoretical calculations of the multicomponent molecular orbital method.The barrier reduction by deuterium substitution was partly attributed to the difference between the wave functions of H and D atomic nuclei.
文摘瑞典皇家科学院决定,授予路易·格劳伯(Roy J Glauber)、约翰·霍尔(John L Hall)和提阿多·汉斯(Theodor W Hnsch)2005年度的诺贝尔物理学奖。格劳伯是因为他在光相干的量子理论方面的贡献,霍尔和汉斯则是因为他们在发展激光精密光谱学,包括光频梳(optical frequency comb)技术方面的贡献,而分别获此殊荣的。按历史进程简单评述了现代量子光学的发端,给出了现代量子光学的内容概要,较详细地介绍了汉斯和霍尔是如何发展光频梳技术以精确测量光频的。