This paper reports on the performance evaluation of a novel latching-type electromagnetic actuator which is designed to be embedded at selected joints along single-port laparoscopic surgical instruments (SLS). The aim...This paper reports on the performance evaluation of a novel latching-type electromagnetic actuator which is designed to be embedded at selected joints along single-port laparoscopic surgical instruments (SLS). The aim of this actuator is to allow these instruments to become articulated with a push of a button in order to provide the optimum angulation required during SLS operations. This new actuator is comprised of electromagnetic coil elements, soft magnetic frames and a permanent magnet. Unlike conventional electromagnetic actuators, latching-type electromagnetic actuators could maintain their positions at either end of the actuation stroke without any power application requirement. In the current design, magnetic attraction forces initiated between the permanent magnet and the magnetic frame are utilised to lock the position of the actuator whilst a certain angulation position of the actuator is achieved as a result of the magnetic repulsion forces established between the permanent magnet and the coil elements. The performance of the new actuator in terms of the output force, maximum angulation and patient’s safety, was evaluated experimentally and the results were found to compare well with those acquired numerically using finite element methods. This actuator was seen to exhibit sufficient actuation forces and hence, it was capable of providing adaptable angulation characteristics for SLS tools. Finally, thermal evaluation of the actuator’s operation was conducted, which was found to be within safety limits specified by clinicians.展开更多
The latching control represents an attractive alternative to increase the power absorption of wave energy converters(WECs)by tuning the phase of oscillator velocity to the wave excitation phase.However,increasing the ...The latching control represents an attractive alternative to increase the power absorption of wave energy converters(WECs)by tuning the phase of oscillator velocity to the wave excitation phase.However,increasing the amplitude of motion of the floating body is not the only challenge to obtain a good performance of the WEC.It also depends on the efficiency of the power take-off system(PTO).This study aims to address the actual power performance and operation of a heaving point absorber with a direct mechanical drive PTO system controlled by latching.The PTO characteristics,such as the gear ratio,the flywheel inertia,and the electric generator,are analyzed in the WEC performance.Three cylindrical point absorbers are also considered in the present study.A wave-to-wire model is developed to simulate the coupled hydro-electro-mechanical system in regular waves.The wave energy converter(WEC)performance is analyzed using the potential linear theory but considering the viscous damping effect according to the Morison equation to avoid the overestimated responses of the linear theory near resonance when the latching control system is applied.The latching control system increases the mean power.However,the increase is not significant if the parameters that characterize the WEC provide a considerable mean power.The performance of the proposed mechanical power take-off depends on the gear ratio and flywheel.However,the gear ratio shows a more significant influence than the flywheel inertia.The operating range of the generator and the diameter/draft ratio of the buoy also influence the PTO performance.展开更多
The design of a new type of latching voltage comparator ZJ03 is described.Thecommon voltage comparators consist of multistage DC amplifiers,for which it is difficult to realizehigh speed and high precision.The ZJ03 co...The design of a new type of latching voltage comparator ZJ03 is described.Thecommon voltage comparators consist of multistage DC amplifiers,for which it is difficult to realizehigh speed and high precision.The ZJ03 comparator contains a controlled positive feedbackamplifier.Therefore,it is capable of realizing high speed and high precision.For improving theperformance and producibility,the tolerance extension,design centering and potential adaptingtechniques are used in the design of comparator ZJ03.展开更多
Latching control is considered to be an effective way to improve the energy absorption of a wave energy converter(WEC).Recently, a latching control method was realized in a hydraulic power take-off(PTO) system and was...Latching control is considered to be an effective way to improve the energy absorption of a wave energy converter(WEC).Recently, a latching control method was realized in a hydraulic power take-off(PTO) system and was demonstrated to be effective in one-body WECs. However, the effectiveness of latching control for two-body WECs still needs to be tested. In this paper, a feedback latching controller is proposed for a conceptual two-body WEC. In this conceptual design, a permanent-magnet linear generator(PMLG) is adopted as the PTO system, and a pure water hydraulic cylinder system is designed for performing the latching control. A feedback control strategy based on the measurement of latching force is established, formulated and tested numerically under realistic irregular wave conditions. The effects of the wave peak period and the PTO damping coefficient on the effectiveness of the latching control is also investigated. The results indicate that the proposed feedback latching control is effective for improving the annual power absorption of the two-body WEC. Furthermore, compared to another latching control,the proposed control is more practical because it does not require any knowledge of the wave conditions or the dynamics of the whole WEC system.展开更多
针对图像匹配中AKAZE(Accelerated-KAZE)算法匹配精度较低以及计算复杂等问题,提出了一种基于高斯滤波和AKAZE-LATCH(AKAZE-Learned Arrangements of Three Patch Codes)算法相融合的图像匹配算法。首先,对输入图像进行高斯滤波预处理,...针对图像匹配中AKAZE(Accelerated-KAZE)算法匹配精度较低以及计算复杂等问题,提出了一种基于高斯滤波和AKAZE-LATCH(AKAZE-Learned Arrangements of Three Patch Codes)算法相融合的图像匹配算法。首先,对输入图像进行高斯滤波预处理,去除高斯噪声等连续性噪声,并且保留图像的边缘信息。然后通过LATCH算法为AKAZE算法构建高效的二进制描述子,再通过KNN(K Nearest Neighbors)算法得到对应的匹配对。最后结合USAC(Universal RANSAC)去除误匹配对方法进行再次筛选,得到最终的匹配结果。经实验对比,所设计的算法相较于AKAZE算法匹配精度更高,且具有良好的鲁棒性和可靠性,可用于多数复杂场景下的图像匹配。展开更多
With the development of semiconductor technology,the size of transistors continues to shrink.In complex radiation environments in aerospace and other fields,small-sized circuits are more prone to soft error(SE).Curren...With the development of semiconductor technology,the size of transistors continues to shrink.In complex radiation environments in aerospace and other fields,small-sized circuits are more prone to soft error(SE).Currently,single-node upset(SNU),double-node upset(DNU)and triple-node upset(TNU)caused by SE are relatively common.TNU’s solution is not yet fully mature.A novel and low-cost TNU self-recoverable latch(named NLCTNURL)was designed which is resistant to harsh radiation effects.When analyzing circuit resiliency,a double-exponential current source is used to simulate the flipping behavior of a node’s stored value when an error occurs.Simulation results show that the latch has full TNU self-recovery.A comparative analysis was conducted on seven latches related to TNU.Besides,a comprehensive index combining delay,power,area and self-recovery—DPAN index was proposed,and all eight types of latches from the perspectives of delay,power,area,and DPAN index were analyzed and compared.The simulation results show that compared with the latches LCTNURL and TNURL which can also achieve TNU self-recoverable,NLCTNURL is reduced by 68.23%and 57.46%respectively from the perspective of delay.From the perspective of power,NLCTNURL is reduced by 72.84%and 74.19%,respectively.From the area perspective,NLCTNURL is reduced by about 28.57%and 53.13%,respectively.From the DPAN index perspective,NLCTNURL is reduced by about 93.12%and 97.31%.The simulation results show that the delay and power stability of the circuit are very high no matter in different temperatures or operating voltages.展开更多
Gate-grounded n-channel metal-oxide-semiconductor(GGNMOS)devices have been widely implemented as power clamps to protect semiconductor devices from electrostatic discharge stress owing to their simple construction,eas...Gate-grounded n-channel metal-oxide-semiconductor(GGNMOS)devices have been widely implemented as power clamps to protect semiconductor devices from electrostatic discharge stress owing to their simple construction,easy triggering,and low power dissipation.We present a novel I-V characterization of the GGNMOS used as the power clamp in complementary metal-oxide-semiconductor circuits as a result of switching the ESD paths under different impact energies.This special effect could cause an unexpected latch-up or pre-failure phenomenon in some applications with relatively large capacitances from power supply to power ground,and thus should be urgently analyzed and resolved.Transmission-linepulse,human-body-modal,and light-emission tests were performed to explore the root cause.展开更多
A 1 :2 demultiplexer is designed and realized in standard 0. 18μm CMOS technology. A novel high-speed and low-voltage latch is used to realize the core circuit cell. Compared to the traditional source-coupled FET lo...A 1 :2 demultiplexer is designed and realized in standard 0. 18μm CMOS technology. A novel high-speed and low-voltage latch is used to realize the core circuit cell. Compared to the traditional source-coupled FET logic structure latch, its power supply voltage is lower and the speed is faster. In addition, the negative feedback is used in the buffer circuit to widen its bandwidth. Measurement results show that the chip can work at the data rate of 20Gb/ s. The supply voltage is 1.8V and the current,including the buffer circuit, is 72mA.展开更多
A low power 12Gb/s single-stage 1 : 4 demultiplexer (DEMUX) applied in SONET OC-192 is realized in TSMC's mix-signal 0. 25μm CMOS. All of the circuits are in source coupled FET logic (SCFL) to achieve as high a...A low power 12Gb/s single-stage 1 : 4 demultiplexer (DEMUX) applied in SONET OC-192 is realized in TSMC's mix-signal 0. 25μm CMOS. All of the circuits are in source coupled FET logic (SCFL) to achieve as high a speed as possible and suppress common mode distortions. This DEMUX is featured for achieving singlestage demultiplexing by using a quarter-rate IQ clock. This method not only reduces the components of the DEMUX but also lowers its power dissipation. The fabricated DEMUX operates error free at 12Gb/s by 231 - 1 pseudorandom bit sequences in on-wafer testing. The chip size is 0. 9mm × 0.9mm and the power dissipation is only 210mW with a single 2.5V supply.展开更多
A 10 Gbit/s (STM-64, OC-192) 1:4 demultiplexer (DEMUX) with 4-phase clock wasachieved in TSMC's standard 0.25 μm complementary metal-oxide-semiconductor (CMOS) technique. Allof the circuits are in source coupled ...A 10 Gbit/s (STM-64, OC-192) 1:4 demultiplexer (DEMUX) with 4-phase clock wasachieved in TSMC's standard 0.25 μm complementary metal-oxide-semiconductor (CMOS) technique. Allof the circuits are in source coupled FET logic (SCFL) to achieve as high as possible speed andsuppress common mode distortions. This DEMUX is featured by constant-delay buffers to generate a4-phase clock and adjust skews of the four channel outputs. The fabricated DEMUX operates error freeat 10 Gbit/s by 2^(31) -1 pseudorandom bit sequences (PRBS) via on-wafer testing. The measured rootmean square (rms) jitter, rising and failing edge of the eye-diagram are 11, 123 and 137 ps,respectively. The chip size is 0.9 mm x 1.2 mm and the power dissipation is 550 mW with a 3. 3 Vsupply.展开更多
文摘This paper reports on the performance evaluation of a novel latching-type electromagnetic actuator which is designed to be embedded at selected joints along single-port laparoscopic surgical instruments (SLS). The aim of this actuator is to allow these instruments to become articulated with a push of a button in order to provide the optimum angulation required during SLS operations. This new actuator is comprised of electromagnetic coil elements, soft magnetic frames and a permanent magnet. Unlike conventional electromagnetic actuators, latching-type electromagnetic actuators could maintain their positions at either end of the actuation stroke without any power application requirement. In the current design, magnetic attraction forces initiated between the permanent magnet and the magnetic frame are utilised to lock the position of the actuator whilst a certain angulation position of the actuator is achieved as a result of the magnetic repulsion forces established between the permanent magnet and the coil elements. The performance of the new actuator in terms of the output force, maximum angulation and patient’s safety, was evaluated experimentally and the results were found to compare well with those acquired numerically using finite element methods. This actuator was seen to exhibit sufficient actuation forces and hence, it was capable of providing adaptable angulation characteristics for SLS tools. Finally, thermal evaluation of the actuator’s operation was conducted, which was found to be within safety limits specified by clinicians.
基金The authors acknowledge the support from the Brazilian Research Council(CNPq),contract numbers 380950/2018-9(INEOF-National Institute for Ocean and River Energy)and 305657/2017-8,respectivelySpecial thanks to FAPERJ for the support of the wave energy research at the Subsea Technology Lab(COPPE),contract number E-26/202.600/2019。
文摘The latching control represents an attractive alternative to increase the power absorption of wave energy converters(WECs)by tuning the phase of oscillator velocity to the wave excitation phase.However,increasing the amplitude of motion of the floating body is not the only challenge to obtain a good performance of the WEC.It also depends on the efficiency of the power take-off system(PTO).This study aims to address the actual power performance and operation of a heaving point absorber with a direct mechanical drive PTO system controlled by latching.The PTO characteristics,such as the gear ratio,the flywheel inertia,and the electric generator,are analyzed in the WEC performance.Three cylindrical point absorbers are also considered in the present study.A wave-to-wire model is developed to simulate the coupled hydro-electro-mechanical system in regular waves.The wave energy converter(WEC)performance is analyzed using the potential linear theory but considering the viscous damping effect according to the Morison equation to avoid the overestimated responses of the linear theory near resonance when the latching control system is applied.The latching control system increases the mean power.However,the increase is not significant if the parameters that characterize the WEC provide a considerable mean power.The performance of the proposed mechanical power take-off depends on the gear ratio and flywheel.However,the gear ratio shows a more significant influence than the flywheel inertia.The operating range of the generator and the diameter/draft ratio of the buoy also influence the PTO performance.
文摘The design of a new type of latching voltage comparator ZJ03 is described.Thecommon voltage comparators consist of multistage DC amplifiers,for which it is difficult to realizehigh speed and high precision.The ZJ03 comparator contains a controlled positive feedbackamplifier.Therefore,it is capable of realizing high speed and high precision.For improving theperformance and producibility,the tolerance extension,design centering and potential adaptingtechniques are used in the design of comparator ZJ03.
基金supported by the National Key R&D Program of China(Grant No.2016YFC1400202)the China Postdoctoral Science Foundation(Grant No.2017M622692)+2 种基金the Open Foundation of the State Key Laboratory of Coastal and Offshore Engineering of Dalian University of Technology(Grant No.LP1713)the Guangdong Provincial Department of Science and Technology(Grant No.2015A020216005)the Fundamental Research Funds for the Central Universities(Grant No.2017BQ093)
文摘Latching control is considered to be an effective way to improve the energy absorption of a wave energy converter(WEC).Recently, a latching control method was realized in a hydraulic power take-off(PTO) system and was demonstrated to be effective in one-body WECs. However, the effectiveness of latching control for two-body WECs still needs to be tested. In this paper, a feedback latching controller is proposed for a conceptual two-body WEC. In this conceptual design, a permanent-magnet linear generator(PMLG) is adopted as the PTO system, and a pure water hydraulic cylinder system is designed for performing the latching control. A feedback control strategy based on the measurement of latching force is established, formulated and tested numerically under realistic irregular wave conditions. The effects of the wave peak period and the PTO damping coefficient on the effectiveness of the latching control is also investigated. The results indicate that the proposed feedback latching control is effective for improving the annual power absorption of the two-body WEC. Furthermore, compared to another latching control,the proposed control is more practical because it does not require any knowledge of the wave conditions or the dynamics of the whole WEC system.
文摘针对图像匹配中AKAZE(Accelerated-KAZE)算法匹配精度较低以及计算复杂等问题,提出了一种基于高斯滤波和AKAZE-LATCH(AKAZE-Learned Arrangements of Three Patch Codes)算法相融合的图像匹配算法。首先,对输入图像进行高斯滤波预处理,去除高斯噪声等连续性噪声,并且保留图像的边缘信息。然后通过LATCH算法为AKAZE算法构建高效的二进制描述子,再通过KNN(K Nearest Neighbors)算法得到对应的匹配对。最后结合USAC(Universal RANSAC)去除误匹配对方法进行再次筛选,得到最终的匹配结果。经实验对比,所设计的算法相较于AKAZE算法匹配精度更高,且具有良好的鲁棒性和可靠性,可用于多数复杂场景下的图像匹配。
基金The Open Project Program of the Shanxi Key Laboratory of Advanced Semiconductor Optoelectronic Devices and Integrated Systems(2023SZKF17)the University Synergy Innovation Program of Anhui Province(GXXT-2022-080)。
文摘With the development of semiconductor technology,the size of transistors continues to shrink.In complex radiation environments in aerospace and other fields,small-sized circuits are more prone to soft error(SE).Currently,single-node upset(SNU),double-node upset(DNU)and triple-node upset(TNU)caused by SE are relatively common.TNU’s solution is not yet fully mature.A novel and low-cost TNU self-recoverable latch(named NLCTNURL)was designed which is resistant to harsh radiation effects.When analyzing circuit resiliency,a double-exponential current source is used to simulate the flipping behavior of a node’s stored value when an error occurs.Simulation results show that the latch has full TNU self-recovery.A comparative analysis was conducted on seven latches related to TNU.Besides,a comprehensive index combining delay,power,area and self-recovery—DPAN index was proposed,and all eight types of latches from the perspectives of delay,power,area,and DPAN index were analyzed and compared.The simulation results show that compared with the latches LCTNURL and TNURL which can also achieve TNU self-recoverable,NLCTNURL is reduced by 68.23%and 57.46%respectively from the perspective of delay.From the perspective of power,NLCTNURL is reduced by 72.84%and 74.19%,respectively.From the area perspective,NLCTNURL is reduced by about 28.57%and 53.13%,respectively.From the DPAN index perspective,NLCTNURL is reduced by about 93.12%and 97.31%.The simulation results show that the delay and power stability of the circuit are very high no matter in different temperatures or operating voltages.
基金Project supported by the National Natural Science Foundation of China(Grant No.61974017)。
文摘Gate-grounded n-channel metal-oxide-semiconductor(GGNMOS)devices have been widely implemented as power clamps to protect semiconductor devices from electrostatic discharge stress owing to their simple construction,easy triggering,and low power dissipation.We present a novel I-V characterization of the GGNMOS used as the power clamp in complementary metal-oxide-semiconductor circuits as a result of switching the ESD paths under different impact energies.This special effect could cause an unexpected latch-up or pre-failure phenomenon in some applications with relatively large capacitances from power supply to power ground,and thus should be urgently analyzed and resolved.Transmission-linepulse,human-body-modal,and light-emission tests were performed to explore the root cause.
文摘A 1 :2 demultiplexer is designed and realized in standard 0. 18μm CMOS technology. A novel high-speed and low-voltage latch is used to realize the core circuit cell. Compared to the traditional source-coupled FET logic structure latch, its power supply voltage is lower and the speed is faster. In addition, the negative feedback is used in the buffer circuit to widen its bandwidth. Measurement results show that the chip can work at the data rate of 20Gb/ s. The supply voltage is 1.8V and the current,including the buffer circuit, is 72mA.
文摘A low power 12Gb/s single-stage 1 : 4 demultiplexer (DEMUX) applied in SONET OC-192 is realized in TSMC's mix-signal 0. 25μm CMOS. All of the circuits are in source coupled FET logic (SCFL) to achieve as high a speed as possible and suppress common mode distortions. This DEMUX is featured for achieving singlestage demultiplexing by using a quarter-rate IQ clock. This method not only reduces the components of the DEMUX but also lowers its power dissipation. The fabricated DEMUX operates error free at 12Gb/s by 231 - 1 pseudorandom bit sequences in on-wafer testing. The chip size is 0. 9mm × 0.9mm and the power dissipation is only 210mW with a single 2.5V supply.
文摘A 10 Gbit/s (STM-64, OC-192) 1:4 demultiplexer (DEMUX) with 4-phase clock wasachieved in TSMC's standard 0.25 μm complementary metal-oxide-semiconductor (CMOS) technique. Allof the circuits are in source coupled FET logic (SCFL) to achieve as high as possible speed andsuppress common mode distortions. This DEMUX is featured by constant-delay buffers to generate a4-phase clock and adjust skews of the four channel outputs. The fabricated DEMUX operates error freeat 10 Gbit/s by 2^(31) -1 pseudorandom bit sequences (PRBS) via on-wafer testing. The measured rootmean square (rms) jitter, rising and failing edge of the eye-diagram are 11, 123 and 137 ps,respectively. The chip size is 0.9 mm x 1.2 mm and the power dissipation is 550 mW with a 3. 3 Vsupply.