During the Late Carboniferous to Early Permian,a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean(PAO)subduction in the Xi Ujimqin area.Never...During the Late Carboniferous to Early Permian,a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean(PAO)subduction in the Xi Ujimqin area.Nevertheless,the closure time of the PAO is still under debate.Thus,to identify the origin of the PAO,the geochemistry and U-Pb age of zircons were analyzed for the extra-large deep marine,polymict clastic boulders and sandstones in the Shoushangou Formation within the basin.The analyses revealed magmatic activity and tectonic evolution.The conglomerates include megaclasts of granite(298.8±9.1 Ma)and granodiorite porphyry(297.1±3.1 Ma),which were deposited by muddy debris flow.Results of this study demonstrated that the boulders of granitoids have the geochemistry of typical I-type granite,characterized by low Zr+Nb+Ce+Y and low Ga/Al values.The granitoid boulders were formed in island arc setting,indicating the presence of arc magmatism in the area that is composed of the Late Carboniferous to Early Permian subduction-related granitoid in southern Xi Ujimqin.Multiple diagrams for determining sedimentary provenance using major and trace elements indicate that Shoushangou sediments originated from continental island arc-related felsic rocks.Detrital zircon U-Pb age cluster of 330–280 Ma was obtained,indicating input from granite,ophiolite,Xilin Gol complex,and Carboniferous sources to the south.The basin was geographically developed behind the arc during the Early Permian period because the outcropped intrusive rocks in the Late Carboniferous to Early Permian form a volcanic arc.The comprehensive analyses of source areas suggest that Shoushangou sediments developed in a backarc basin in response to the northward subduction of the PAO.The backarc basin and intrusive rocks,in addition to previously published Late Carboniferous to Early Permian magmatic rocks of arc unit in Xilin Gol,confirm the presence of an Early Permian trencharc-basin system in the region,represented by the Baolidao arc and Xi Ujimqin backarc basin.This study highlights the importance and potential of combined geochemical and geochronological studies of conglomerates and sandstone for reconstructing the geodynamic setting of a basin.展开更多
The Carboniferous-Early Permian rift-related volcanic successions, covering large areas in the Chinese Tianshan and its adjacent areas, make up a newly recognized important Phanerozoic large igneous province in the wo...The Carboniferous-Early Permian rift-related volcanic successions, covering large areas in the Chinese Tianshan and its adjacent areas, make up a newly recognized important Phanerozoic large igneous province in the world, which can be further divided into two sub-provinces: Tianshan and Tarim. The regional unconformity of Lower Carboniferous upon basement or pre-Carboniferous rocks, the ages (360--351 Ma) of the youngest ophiolite and the peak of subduction metamorphism of high pressure-low temperature metamorphic belt and the occurrence of Ni-Cu-bearing mafic-ultramafic intrusion with age of ~352 Ma and A-type granite with age of ~358 Ma reveal that the final closure of the Paleo-Asian Ocean might take place in the Early Mississippian. Our summation shows that at least four criteria, being normally used to identify ancient asthenosphere upwelling (or mantle plumes), are met for this large igneous province: (1) surface uplift prior to magmatism; (2) being associated with continental rifting and breakup events; (3) chemical characteristics of asthenosphere (or plume) derived basalts; (4) close links to large-scale mineralization and the uncontaminated basalts, being analogous to those of many "ore-bearing" large igneous provinces, display Sr-Nd isotopic variations between plume and EMI geochemical signatures, These suggest that a Carboniferous asthenosphere upwelling and an Early Permian plume played the central role in the generation of the Tianshan--Tarim (central Asia) large igneous province.展开更多
Numeral Permian mafic-ultramafic complexes occur in the Beishan terrane atthe northeastern margin of the Tarim craton,southwestern Central Asian Orogenic Belt,including the Pobei,Cantoushan,Bijiashan,Hongshishan,Xuanw...Numeral Permian mafic-ultramafic complexes occur in the Beishan terrane atthe northeastern margin of the Tarim craton,southwestern Central Asian Orogenic Belt,including the Pobei,Cantoushan,Bijiashan,Hongshishan,Xuanwoling,Zhongposhan and Luodong etc.,intrusions(Qin et al.,2011;Zhang et al.,2017;Xue et al.,2018).These Beishan mafic-ultramafic complexes are composed of peridotite,pyroxenite.展开更多
Deposits of 10 volcanic events of 6 stages have been discovered by the authors after detailed field and lab studies of the Benxi and Taiyuan Formations in Shandong Province and its adjacent regions. They show certain ...Deposits of 10 volcanic events of 6 stages have been discovered by the authors after detailed field and lab studies of the Benxi and Taiyuan Formations in Shandong Province and its adjacent regions. They show certain temporal-spatial distribution characteristics. Volcanic fragments were probably derived from two different volcanic sources north and south of the North China Platform, while the magma of the two volcanic sources was probably derived from the lower crust. A new stratigraphic correlation scheme is put forward for the Benxi and Taiyuan Formations in this region on the basis of previous biostratigraphic work with the regionally widespread volcanic event layers as the marker bed for the isochronous stratigraphic correlation on a super-regional scale and in conjunction with the maximum transgressive event layers.展开更多
The late Paleozoic tectonic framework of the southeastern Central Asian Orogenic Belt is key to restricting the accretion orogeny between the Siberia Craton and the North China Craton. To clarify the framework, petrog...The late Paleozoic tectonic framework of the southeastern Central Asian Orogenic Belt is key to restricting the accretion orogeny between the Siberia Craton and the North China Craton. To clarify the framework, petrogenesis of early Permian intrusive rocks from southeastern Inner Mongolia was studied. Zircon U-Pb dating for bojite and syenogranite from Ar-Horqin indicate that they were emplaced at 288–285 Ma. Geochemical data reveal that the bojite is highly magnesian and low-K to middle-K calc-alkaline, with E-MORB-type REE and IAB-like trace element patterns. The syenogranite is a middle-K calc-alkaline fractionated A-type granite and shows oceanic-arc-like trace element patterns, with depleted Sr-Nd-Hf isotopes,(~(87)Sr/~(86)Sr)I = 0.7032–0.7042, ε_(Nd)(t) = +4.0 to +6.6 and zircon ε_(Hf)(t) = +11.14 to +14.99. This suggests that the bojite was derived from lithospheric mantle metasomatized by subducted slab melt, while the syenogranite originated from very juvenile arc-related lower crust. Usng data from coeval magmatic rocks from Linxi-Ar-Horqin, the Ar-Horqin intra-oceanic arc was reconstructed, i.e., initial transition in 290–280 Ma and mature after 278 Ma. Combined with regional geological and geophysical materials in southeastern Inner Mongolia, an early Permian tectonic framework as ‘one narrow ocean basin of the PAO', ‘two continental marginal arcs on its northern and southern' and ‘one intra-oceanic arc in its southern' is proposed.展开更多
Four great second-order transgressions occurred during the Late Carboniferous to early Early Permian and they came from both the eastern and western sea areas in the North China Platform. As time went on, depocentres,...Four great second-order transgressions occurred during the Late Carboniferous to early Early Permian and they came from both the eastern and western sea areas in the North China Platform. As time went on, depocentres, depositional extent, transgression directions, coastline position and distribution of minable coal seams were changing continuously. The third great second-order transgression occurring at the beginning of the early Early Permian marks the maximum transgression period and before its arrival, i.e. at the close of the late Late Carboniferous, there was the super-regional coal-forming environment. During the second, third and fourth transgressions, the northern North China Platform was all along situated on the transgressive margin of the epicontinental sea and became the major distribution area of thick coal belts because it maintained a coal-forming environment for a long period of time from the close of the late Late Carboniferous to the Early Permian.展开更多
A kind of silicified fossil wood with mixed pits on the radial tracheid wall is described. The fossil wood was collected from the top of Taiyuan Formation (early Early Permian) in Wuda Mi...A kind of silicified fossil wood with mixed pits on the radial tracheid wall is described. The fossil wood was collected from the top of Taiyuan Formation (early Early Permian) in Wuda Mining District, Nei Mongol. Compared with the Paleozoic fossil woods in the world, it is put into Araucarioxylon Kraus and named as A. laoshidanense sp. nov. Based on the character of possessing mixed pittings (alternate and opposite pittings) on the radial tracheid wall, the fossil wood is believed to be one of the unknown primitive conifers.Diagnosis of the new species: Only secondary xylem preserved and consisting of axial tracheids and rays. Growth ring boundary, resin duct and axial parenchyma absent. One to Four (commonly 2 or 3) seriates of bordered pits (mostly alternate but sometimes opposite) on the radial tracheid wall. One to Four (commonly 1, rarely 2 to 4) Cupressoid pits in each cross_field. Rays usually uniseriate, sometimes partly_ biseriate and 2 to 39 (mainly 3-5) cells high.展开更多
Field geological investigation and geochemical analysis are carried out on Baya'ertuhushuo Gabbro in South Great Xing'an Range. Field investigation reveals that the gabbro is a magmatic intrusion rather than a compo...Field geological investigation and geochemical analysis are carried out on Baya'ertuhushuo Gabbro in South Great Xing'an Range. Field investigation reveals that the gabbro is a magmatic intrusion rather than a component of an ophiolite suite as previously thought. Zircon laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) U-Pb dating indicates the gabbro was formed in 274-275 Ma, just as the widespread volcanic rocks of Dashizhai Formation (P1d), monzogranites and miarolitic alkali-feldspar granites in the study area. The gabbro has SiO2 content between 47.23 wt% and 50.17 wt%, high MgO and FeOT contents of 6.95-11.29 wt% and 7.32- 12.24wt%, respectively, and it belongs to low-K tholeiitic series in the SiO2-K2O diagram. The Chondrite-normalized rare earth element (REE) patterns and primitive mantle-normalized spider diagrams of the gabbro are similar to those of Normal Mid-Ocean Ridge Basalt (N-MORB) except for the enrichment of large ion lithophfle elements (LILE), such as Rb, Ba and K. In trace element tectonic discriminative diagrams, the samples are mainly plotted in the N-MORB field, and Zircon in situ Lu-Hf isotopic analysis also indicates the gabbro originated from depleted mantle. Through synthetic studies of the geochemical characteristics and petrogenesis of Baya'ertuhushuo gabbro, volcanic rocks of Dashizhai Formation and granitoids in the area, it is suggested that the early Permian magmatism in the Xilinhot-Xiwuqi area formed in the tectonic setting of asthenosphere upwelling, which was caused by breaking-off of the subducted Paleo-Asian Ocean slab.展开更多
Compaction rates of sediments or volcaniclastic material are needed to reconstruct original thickness of a bed, which in turn is required to reconstruct subsidence rates, sea-level rise, or in the case of volcanielast...Compaction rates of sediments or volcaniclastic material are needed to reconstruct original thickness of a bed, which in turn is required to reconstruct subsidence rates, sea-level rise, or in the case of volcanielastic, the location or direction of the eruption site. The knowledge of compaction rates can also aid in the reconstruction of deformed fossils. The known shape of deformed fossils can allow the determination of the compaction they experienced. Here we report the compaction rate in an early Permian volcanic tuff from Wuda, Inner Mongolia, determined from the deformation of standing tree fern stems of known anatomy. The compaction rate has been found to be 0.56 in this case, indicating that 44% of original thickness remains.展开更多
The Kungurian Stage is one of the three remaining stages of the Permian that is not yet defined at the base by a Global Stratotype Section and Point (GSSP). The candidate section at the Yuryuzan'River in the Urals ...The Kungurian Stage is one of the three remaining stages of the Permian that is not yet defined at the base by a Global Stratotype Section and Point (GSSP). The candidate section at the Yuryuzan'River in the Urals yields few conodonts, and contains non-marine sediments near the boundary. The search for a suitable, continuous marine succession is a principal task for the Subcommission on Permian Stratigraphy. The Leonardian, with its type area in the southwest United States, and in objective stratigraphic succession directly beneath the basal Guadalupian Roadian Stage,has priority to serve as a subseries of the Lower Permian. However, distinct provincialism limits the correlation of Leonardian fossil zones with the fusuline-based Tethyan timescale. Conodonts can be correlated in many important regions on opposite sides of Pangea, yet contradictions arise when relating conodont zones with fusuline and ammonoid zones. The different taxonomic philosophies are highly suspected for the cause of the conflicts, but also there are different conodonts from the type Roadian in West Texas. Given that the Pamir and Darvaz in central Asia are difficult to access, further investigations should focus on South China, where abundant fusulines and ammonoids facilitate correlation throughout the Tethyan region, and where conodonts permit correlation with North America.展开更多
Reef frameworks and building models of the Early-Middle Permian in the eastern Kunlun Mountains have been verified through studies of reef-building communities, palaeoecology and carbonate facies. The eastern Kunlun r...Reef frameworks and building models of the Early-Middle Permian in the eastern Kunlun Mountains have been verified through studies of reef-building communities, palaeoecology and carbonate facies. The eastern Kunlun reefs are built mainly by 6 reef-building communities, which include 11 major categories of frame-building organisms and 6 categories of reef-associated organisms. Eight types of reef-frames have been distinguished and eleven kinds of rocks identified to belong to 6 reef facies. Three sorts of reefs classified by previous researchers, namely mudmounds, knoll reefs and walled reefs, are well developed in the study area. Such reef-facies association and reef distribution show that there are 4 models of reef growth and development, i.e. the tidal-bank knoll-reef model, the plateau-margin wall-reef model, the composite wall-reef model and the deep-water mudmound model. The reefs are mainly constructed by calcareous sponge and calcareous algae, which are similar to all Permian reefs in other area展开更多
The Woniusi flood basalts from the Baoshan terrane,SW China,represent a significant eruption of volcanic rocks which were linked to the Late Paleozoic rifting of the Cimmeria from the northern margin of East Gondwana....The Woniusi flood basalts from the Baoshan terrane,SW China,represent a significant eruption of volcanic rocks which were linked to the Late Paleozoic rifting of the Cimmeria from the northern margin of East Gondwana.However,the precise mechanism for the formation and propagation of the rifting is still in debate.Here we report 40 Ar/39 Ar dating,whole-rock geochemistry,and Sr-Nd-Pb isotopes for the Woniusi basalts from the Baoshan terrane of SW China,with the aim of assessing if a mantle plume was related to the formation of the continent Cimmeria.40 Ar/39 Ar dating of the Woniusi basalts yielded ages of 279.3±1.1 Ma and 273.9±1.5 Ma,indicating they were emplaced during the Early Permian.Whole-rock geochemistry shows that these basalts have subalkaline tholeiitic affinity,low Ti O2(1.2-2.2 wt%),and fractionated chondrite-normalized LREE and nearly flat HREE patterns[(La/Yb)N=2.86-5.77;(Dy/Yb)N=1.21-1.49]with noticeable negative Nb and Ta anomalies on the primitive mantle-normalized trace element diagram.Theε(Nd)(t)values(-4.76 to+0.92)and high(206 Pb/204 Pb)i(18.40-18.66)along with partial melt modeling indicates that the basalts were likely derived from a sub-continental lithospheric mantle(SCLM)source metasomatized by subduction-related processes.On the basis of a similar emplacement age to the Panjal basalts and Qiangtang mafic dykes and flood basalts in the Himalayas,combined with a tectonic reconstruction of Gondwana in the Early Permian,we propose that the large-scale eruption of these basalts and dykes was related to an Early Permian mantle plume that possibly initiated the rifting on the northern margin of East Gondwana.展开更多
Abstract: Based on the study of stratigraphy and fossils, the Early Permian ocean in eastern Kunlun is recognized as a kind of reef-island ocean, in which there exist many different kinds of sediment, including patch ...Abstract: Based on the study of stratigraphy and fossils, the Early Permian ocean in eastern Kunlun is recognized as a kind of reef-island ocean, in which there exist many different kinds of sediment, including patch carbonate platform, reef facies, transitional facies and deep basin sediments. It has been found that the total contents of REEs increase gradually from carbonate platform facies to deep basin facies. Meanwhile, sediments of different facies have different REE distribution patterns and different Ce anomalies. Most of the sediments of patch carbonate platform facies or reef facies are characterized by extremely negative Ce anomalies or moderately negative Ce anomalies (Ce/Ce*=0.33 to 0.55), and medium or thin-bedded limestones of transitional facies by moderately negative Ce anomalies (Ce/Ce*=0.49 to 0.60). However, sediments of deep basin facies show weak or no negative Ce anomalies (Ce/Ce*=0.69 to 1.47), among which the value of Ce/Ce* in the radiolarian chert is 1.47.展开更多
Late Paleozoic igneous rocks are extensively developed in Qiangtang terrene,including west Qiangtang(WQT),east Qiangtang(EQT)and the central Qiangtang(CQT)metamorphic belt.The igneous rocks distributed in WQT
To understand and help settle the controversy around the living time of Pinnatiramosus qianensis Geng, a paleo-weathering profile situated in the town of Yongle near the city of Zunyi, north Guizhou Province, China, w...To understand and help settle the controversy around the living time of Pinnatiramosus qianensis Geng, a paleo-weathering profile situated in the town of Yongle near the city of Zunyi, north Guizhou Province, China, was analyzed. The profile formed during a break in sedimentation between the Early Silurian and the Early Permian.Paleosol developed with a depth of several meters. The fossil plant P. qianensis Geng is present, but only in the lower portions(Layer 2) of the paleosol. Another plant with an irregularly branching system is found in Layers 2and 3. The distinct geochemical characteristics of the lower and upper portions of the Gaojiayan paleosol indicate a compound genesis. Its lower portions(Layers 1 and 2)resulted from in situ weathering of silty mudstone of the lower Silurian Hanjiadian Formation. The upper portions(Layer 3) are allochthonous. Transgression brought substantial concentrations K and Na, and led to K- and Naenrichment in the profile. Pumping of vascular plants and downward leaching enhanced the K enrichment in the middle portions. A superior preservation of P. qianensis Geng was observed in an exposure of Layer 2. Mass balance calculation indicates a great K enrichment related to bioaccumulation in the top of Layer 2 and a K loss in Layer3. Fossil plants(e.g., P. qianensis Geng) preserved in the paleosol are Permian rooting systems growing down into the lower Silurian rocks.展开更多
This study reports the anatomical structures of a kind of lepidodendralean stem in coal balls from the early Early Permian Taiyuan Formation in Yanzhou Mining District, southwestern Shandong Province, North China. The...This study reports the anatomical structures of a kind of lepidodendralean stem in coal balls from the early Early Permian Taiyuan Formation in Yanzhou Mining District, southwestern Shandong Province, North China. The leaf cushion is slightly rhomboid in outline with a height of 9 - 10 mm and a width of 7.5 9.0 mm and its lower sides are slightly longer than the upper ones. The top and basic angles of the leaf cushion are truncate and the basic angle is slightly elongate. The upper part of the leaf cushion is strongly high-rising. The leaf sear is large and lenticular in shape. The leaf trace is wide and V-shaped in the leaf scar, and horizontally elongate within the leaf cushion. The leaf trace and lateral parichnos strand extend at a nearly horizontal course outward within the leaf cushion. The ligular pit is deep and extends outward at an oblique course and its aperture is located near the top angle of the leaf scar. No infrafoliar parichnos strands are present. The stem is probably siphonostelic and its pith is probably parenchymatous. The primary xylem is exarch with a nearly smooth outer margin. Only the outer cortex is present and it consists of alternately-arranged radial cell bands and gaps within which the are-shaped or V-shaped leaf traces can be seen. The concave side of the leaf trace is toward the center of the stem. No bundle sheath is developed. Periderm is well-developed and consists of phelloderm and phellem in nearly equal thickness. Compared with the lepidodendralean stems of the Cathaysian and Euramerican Floras, the present specimens are most close to an impression-compression species Lepidodendron pulchrum Zhang in morphology of the leaf cushion and they are put into this species temporarily. Whether the present specimens or the type specimens of L. pulchrum are very different from Lepidodendron Sternburg sensu DiMichele, thus the correct nomenclature and classification of L. pulchrum needs to be reconsidered based on the study of better- and anatomically-preserved stems and fertile organs in the future. Because 'L'. pulchrum possesses the mixed features of several genera of Euramerican lepidodendralean stems, it bears significance to study the origin and evolution of the Cathaysian lepidodendralean lycopods.展开更多
Collected from a Late Permian to Early Triassic sedimentary section in the Zhongliang Mountain of Chongqing, Southwest China, sixty marine carbonate samples were measured for the 87Sr/86Sr ratios, and corresponding ev...Collected from a Late Permian to Early Triassic sedimentary section in the Zhongliang Mountain of Chongqing, Southwest China, sixty marine carbonate samples were measured for the 87Sr/86Sr ratios, and corresponding evolution curve was constructed. The concentrations of SiO2, CaO, MgO, Mn and Sr are used to evaluate reservation of strontium isotopic composition for original seawater and the credi-bility of the dissolution method for sample preparation. The results show that most of the samples (except seven samples with the Mn/Sr ratios higher than 2) contain the original geochemistry signa-tures of ancient seawater. Compared to the published 87Sr/86Sr ratios from the Late Permian to Early Triassic, our database reported here is the largest and the curve constructed is the most complete. The strontium isotopic curve from Late Permian to Early Triassic is consistent globally and exhibits a gen-eral trend of steady increase during this period. The minimum of 87Sr/86Sr ratios (0.707011) occurs in the Late Permian (30 m in thickness below the Permian-Triassic boundary), and the maximum (0.708281), near the Early-Middle Triassic boundary. The lack of land plants and the rapid continental weathering result in the increase of 87Sr/86Sr ratios during the interval. The Permian-Triassic boundary in Zhongli-ang Mountain Section has been accepted internationally. The 87Sr/86Sr ratios of six samples near the boundary vary from 0.70714 to 0.70715 with an average of 0.70714, which is consistent with the value of 0.70715 (samples are from articulate brachiopod shells) from Korte et al. published in 2006 (within the error range in experiment). Accordingly, the strontium isotope composition in the Permian-Triassic boundary in this paper is of global significance. It can be confirmed that the 87Sr/86Sr ratios of the sea-water in the Permian-Triassic transition are in the range of 0.70714―0.70715.展开更多
Results of a systematic paleomagnetic study are reported based on Late Carboniferous to Early Permian sedimentary rocks on the north slope of the Tanggula Mountains, in the northern Qiangtang terrane (NQT), Tibet, C...Results of a systematic paleomagnetic study are reported based on Late Carboniferous to Early Permian sedimentary rocks on the north slope of the Tanggula Mountains, in the northern Qiangtang terrane (NQT), Tibet, China. Data revealed that magnetic minerals in limestone samples from the Zarigen Formation (CP^z)are primarily composed of magnetite, while those in sandstone samples from the Nuoribagaribao Formation (Pnr) are dominated by hematite alone, or hematite and magnetite in combination. Progressive thermal, or alternating field, demagnetization allowed us to isolate a stable high temperature component (HTC) in 127 specimens from 16 sites which successfully passed the conglomerate test, consistent with primary remnance. The tilt-corrected mean direction for Late Carboniferous to Early Permian rocks in the northern Qiangtang terrane is D°=30.2°, Is=-40.9°, ks=269.0, a95=2.3°, N=16, which yields a corresponding paleomagnetic pole at 25.7°N, 241.5°E (alp/rim=2.8°/1.7°), and a paleolatitude of 23.4°S. Our results, together with previously reported paleomagnetic data, indicate that: (1) the NQT in Tibet, China, was located at a low latitude in the southern hemisphere, and may have belonged to the northern margin of Gondwana during the Late Carboniferous to Early Permian; (2) the Paleo-Tethys Ocean was large during the Late Carboniferous to Early Permian, and (3) the NQT subsequently moved rapidly northwards, perhaps related to the fact that the Paleo-Tethys Ocean was rapidly contracting from the Late Permian to Late Triassic while the Bangong Lake-Nujiang Ocean, the northern branch of the Neo-Tethys Ocean, expanded rapidly during this time.展开更多
The calimicrobialites of Chongyang (崇阳), Hubei (湖北) Province, occur above the mass extinction line in the Late Permian reef facies. Below the boundary are the sponge reef limestone, crinoid limestone and algae...The calimicrobialites of Chongyang (崇阳), Hubei (湖北) Province, occur above the mass extinction line in the Late Permian reef facies. Below the boundary are the sponge reef limestone, crinoid limestone and algae-foraminifer bioclastic limestone of the Changxing (长兴) Formation. The calimicrobialites are generally composed of mid-coarse grains and microlite calcite with a structure of "graniphylc fabric" and stromatolite. The fossils discovered in the calimicrobialites include globular cyanobacteria, ostracods, micro-gastropods, bivalves, fish teeth and some micro-problematical fossils. Conodont fossils of Hindeodus parvus, H. typicalis and H. latidentatus were also found in the calimicrobialites. According to the conodonts, the calimicrobialites spanned the latest Permian and earliest Triassic in the Chongyang Section. The upper part above the first occurrence of Hindeodus parvus should be attributed to the earliest Triassic, and the lower part to the Changhsingian. The sedimentary structure, fossil composition and conodont zonation of the Chongyang calimicrobialites can be well correlated with the calimicrobialites found in other areas of South China.展开更多
基金Funding for this project was provided by the China Geological Survey Project(Grant Nos.DD20230316 and DD20190099)Deep Resources Exploration and Mining Project(Grant No.2019YFC0605202).
文摘During the Late Carboniferous to Early Permian,a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean(PAO)subduction in the Xi Ujimqin area.Nevertheless,the closure time of the PAO is still under debate.Thus,to identify the origin of the PAO,the geochemistry and U-Pb age of zircons were analyzed for the extra-large deep marine,polymict clastic boulders and sandstones in the Shoushangou Formation within the basin.The analyses revealed magmatic activity and tectonic evolution.The conglomerates include megaclasts of granite(298.8±9.1 Ma)and granodiorite porphyry(297.1±3.1 Ma),which were deposited by muddy debris flow.Results of this study demonstrated that the boulders of granitoids have the geochemistry of typical I-type granite,characterized by low Zr+Nb+Ce+Y and low Ga/Al values.The granitoid boulders were formed in island arc setting,indicating the presence of arc magmatism in the area that is composed of the Late Carboniferous to Early Permian subduction-related granitoid in southern Xi Ujimqin.Multiple diagrams for determining sedimentary provenance using major and trace elements indicate that Shoushangou sediments originated from continental island arc-related felsic rocks.Detrital zircon U-Pb age cluster of 330–280 Ma was obtained,indicating input from granite,ophiolite,Xilin Gol complex,and Carboniferous sources to the south.The basin was geographically developed behind the arc during the Early Permian period because the outcropped intrusive rocks in the Late Carboniferous to Early Permian form a volcanic arc.The comprehensive analyses of source areas suggest that Shoushangou sediments developed in a backarc basin in response to the northward subduction of the PAO.The backarc basin and intrusive rocks,in addition to previously published Late Carboniferous to Early Permian magmatic rocks of arc unit in Xilin Gol,confirm the presence of an Early Permian trencharc-basin system in the region,represented by the Baolidao arc and Xi Ujimqin backarc basin.This study highlights the importance and potential of combined geochemical and geochronological studies of conglomerates and sandstone for reconstructing the geodynamic setting of a basin.
基金benefited from financial supports by Land and Resources Survey Project of China(Grant Nos.1212010611804, 121201120133)the National Natural Science Foundation of China(Grant No.40472044)
文摘The Carboniferous-Early Permian rift-related volcanic successions, covering large areas in the Chinese Tianshan and its adjacent areas, make up a newly recognized important Phanerozoic large igneous province in the world, which can be further divided into two sub-provinces: Tianshan and Tarim. The regional unconformity of Lower Carboniferous upon basement or pre-Carboniferous rocks, the ages (360--351 Ma) of the youngest ophiolite and the peak of subduction metamorphism of high pressure-low temperature metamorphic belt and the occurrence of Ni-Cu-bearing mafic-ultramafic intrusion with age of ~352 Ma and A-type granite with age of ~358 Ma reveal that the final closure of the Paleo-Asian Ocean might take place in the Early Mississippian. Our summation shows that at least four criteria, being normally used to identify ancient asthenosphere upwelling (or mantle plumes), are met for this large igneous province: (1) surface uplift prior to magmatism; (2) being associated with continental rifting and breakup events; (3) chemical characteristics of asthenosphere (or plume) derived basalts; (4) close links to large-scale mineralization and the uncontaminated basalts, being analogous to those of many "ore-bearing" large igneous provinces, display Sr-Nd isotopic variations between plume and EMI geochemical signatures, These suggest that a Carboniferous asthenosphere upwelling and an Early Permian plume played the central role in the generation of the Tianshan--Tarim (central Asia) large igneous province.
基金supported financially by the NSFC projects(Grant Nos.U1403291,41802074,41830216,41202044)projects of the China Geological Survey(Grant Nos.1212010811033,12120113096500,12120113094000,DD20160123,DD20160009 and DD20179607)+1 种基金the IGCP 662 projectDDE.
文摘Numeral Permian mafic-ultramafic complexes occur in the Beishan terrane atthe northeastern margin of the Tarim craton,southwestern Central Asian Orogenic Belt,including the Pobei,Cantoushan,Bijiashan,Hongshishan,Xuanwoling,Zhongposhan and Luodong etc.,intrusions(Qin et al.,2011;Zhang et al.,2017;Xue et al.,2018).These Beishan mafic-ultramafic complexes are composed of peridotite,pyroxenite.
基金This study was supported by the National Natural Science Foundation of China Grant No. 4880102
文摘Deposits of 10 volcanic events of 6 stages have been discovered by the authors after detailed field and lab studies of the Benxi and Taiyuan Formations in Shandong Province and its adjacent regions. They show certain temporal-spatial distribution characteristics. Volcanic fragments were probably derived from two different volcanic sources north and south of the North China Platform, while the magma of the two volcanic sources was probably derived from the lower crust. A new stratigraphic correlation scheme is put forward for the Benxi and Taiyuan Formations in this region on the basis of previous biostratigraphic work with the regionally widespread volcanic event layers as the marker bed for the isochronous stratigraphic correlation on a super-regional scale and in conjunction with the maximum transgressive event layers.
基金funded by project grants from the Chinese Geological Survey (Grants Nos. DD20190039, DD20160048–01, DD20160345–17, DD20190372, DD20190360 and 1212011220435)the Liaoning Education Department (Grant No. LQN201915)。
文摘The late Paleozoic tectonic framework of the southeastern Central Asian Orogenic Belt is key to restricting the accretion orogeny between the Siberia Craton and the North China Craton. To clarify the framework, petrogenesis of early Permian intrusive rocks from southeastern Inner Mongolia was studied. Zircon U-Pb dating for bojite and syenogranite from Ar-Horqin indicate that they were emplaced at 288–285 Ma. Geochemical data reveal that the bojite is highly magnesian and low-K to middle-K calc-alkaline, with E-MORB-type REE and IAB-like trace element patterns. The syenogranite is a middle-K calc-alkaline fractionated A-type granite and shows oceanic-arc-like trace element patterns, with depleted Sr-Nd-Hf isotopes,(~(87)Sr/~(86)Sr)I = 0.7032–0.7042, ε_(Nd)(t) = +4.0 to +6.6 and zircon ε_(Hf)(t) = +11.14 to +14.99. This suggests that the bojite was derived from lithospheric mantle metasomatized by subducted slab melt, while the syenogranite originated from very juvenile arc-related lower crust. Usng data from coeval magmatic rocks from Linxi-Ar-Horqin, the Ar-Horqin intra-oceanic arc was reconstructed, i.e., initial transition in 290–280 Ma and mature after 278 Ma. Combined with regional geological and geophysical materials in southeastern Inner Mongolia, an early Permian tectonic framework as ‘one narrow ocean basin of the PAO', ‘two continental marginal arcs on its northern and southern' and ‘one intra-oceanic arc in its southern' is proposed.
基金This study was supported by the National Natural Science Foundation of China Grant No.4880102.
文摘Four great second-order transgressions occurred during the Late Carboniferous to early Early Permian and they came from both the eastern and western sea areas in the North China Platform. As time went on, depocentres, depositional extent, transgression directions, coastline position and distribution of minable coal seams were changing continuously. The third great second-order transgression occurring at the beginning of the early Early Permian marks the maximum transgression period and before its arrival, i.e. at the close of the late Late Carboniferous, there was the super-regional coal-forming environment. During the second, third and fourth transgressions, the northern North China Platform was all along situated on the transgressive margin of the epicontinental sea and became the major distribution area of thick coal belts because it maintained a coal-forming environment for a long period of time from the close of the late Late Carboniferous to the Early Permian.
文摘A kind of silicified fossil wood with mixed pits on the radial tracheid wall is described. The fossil wood was collected from the top of Taiyuan Formation (early Early Permian) in Wuda Mining District, Nei Mongol. Compared with the Paleozoic fossil woods in the world, it is put into Araucarioxylon Kraus and named as A. laoshidanense sp. nov. Based on the character of possessing mixed pittings (alternate and opposite pittings) on the radial tracheid wall, the fossil wood is believed to be one of the unknown primitive conifers.Diagnosis of the new species: Only secondary xylem preserved and consisting of axial tracheids and rays. Growth ring boundary, resin duct and axial parenchyma absent. One to Four (commonly 2 or 3) seriates of bordered pits (mostly alternate but sometimes opposite) on the radial tracheid wall. One to Four (commonly 1, rarely 2 to 4) Cupressoid pits in each cross_field. Rays usually uniseriate, sometimes partly_ biseriate and 2 to 39 (mainly 3-5) cells high.
基金supported by the State Key Program of National Natural Science of China(grant no.40739905)Special Projects of Investigation and Evaluation of Countrywide Strategic Petroleum Area Selection(grant no.XQ-2007-07)+1 种基金Science and Technology Project of Sinopec(grant no.GO800-06)the Fund for Basic Scientific Research of the Institute of Geology,Chinese Academy of Geological Sciences(grant no.J0920)
文摘Field geological investigation and geochemical analysis are carried out on Baya'ertuhushuo Gabbro in South Great Xing'an Range. Field investigation reveals that the gabbro is a magmatic intrusion rather than a component of an ophiolite suite as previously thought. Zircon laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) U-Pb dating indicates the gabbro was formed in 274-275 Ma, just as the widespread volcanic rocks of Dashizhai Formation (P1d), monzogranites and miarolitic alkali-feldspar granites in the study area. The gabbro has SiO2 content between 47.23 wt% and 50.17 wt%, high MgO and FeOT contents of 6.95-11.29 wt% and 7.32- 12.24wt%, respectively, and it belongs to low-K tholeiitic series in the SiO2-K2O diagram. The Chondrite-normalized rare earth element (REE) patterns and primitive mantle-normalized spider diagrams of the gabbro are similar to those of Normal Mid-Ocean Ridge Basalt (N-MORB) except for the enrichment of large ion lithophfle elements (LILE), such as Rb, Ba and K. In trace element tectonic discriminative diagrams, the samples are mainly plotted in the N-MORB field, and Zircon in situ Lu-Hf isotopic analysis also indicates the gabbro originated from depleted mantle. Through synthetic studies of the geochemical characteristics and petrogenesis of Baya'ertuhushuo gabbro, volcanic rocks of Dashizhai Formation and granitoids in the area, it is suggested that the early Permian magmatism in the Xilinhot-Xiwuqi area formed in the tectonic setting of asthenosphere upwelling, which was caused by breaking-off of the subducted Paleo-Asian Ocean slab.
基金supported by the Chinese Academy of Science Project KZCX2-EW-120National basic Research Program of China (973 Program, 2012CB821901)+2 种基金the National Natural Science Foundation of China to J. W.a grant from the University Research FoundationOther funding from the University of Pennsylvania to H. W. P. during field research
文摘Compaction rates of sediments or volcaniclastic material are needed to reconstruct original thickness of a bed, which in turn is required to reconstruct subsidence rates, sea-level rise, or in the case of volcanielastic, the location or direction of the eruption site. The knowledge of compaction rates can also aid in the reconstruction of deformed fossils. The known shape of deformed fossils can allow the determination of the compaction they experienced. Here we report the compaction rate in an early Permian volcanic tuff from Wuda, Inner Mongolia, determined from the deformation of standing tree fern stems of known anatomy. The compaction rate has been found to be 0.56 in this case, indicating that 44% of original thickness remains.
基金supported by MST(2006FY120300)the Chinese Academy of Sciences (KZCX2-YW-122)the National Natural Science Foundation of China
文摘The Kungurian Stage is one of the three remaining stages of the Permian that is not yet defined at the base by a Global Stratotype Section and Point (GSSP). The candidate section at the Yuryuzan'River in the Urals yields few conodonts, and contains non-marine sediments near the boundary. The search for a suitable, continuous marine succession is a principal task for the Subcommission on Permian Stratigraphy. The Leonardian, with its type area in the southwest United States, and in objective stratigraphic succession directly beneath the basal Guadalupian Roadian Stage,has priority to serve as a subseries of the Lower Permian. However, distinct provincialism limits the correlation of Leonardian fossil zones with the fusuline-based Tethyan timescale. Conodonts can be correlated in many important regions on opposite sides of Pangea, yet contradictions arise when relating conodont zones with fusuline and ammonoid zones. The different taxonomic philosophies are highly suspected for the cause of the conflicts, but also there are different conodonts from the type Roadian in West Texas. Given that the Pamir and Darvaz in central Asia are difficult to access, further investigations should focus on South China, where abundant fusulines and ammonoids facilitate correlation throughout the Tethyan region, and where conodonts permit correlation with North America.
基金This study was supported by the National Natural Science Foundation of China(Project No.49872001).
文摘Reef frameworks and building models of the Early-Middle Permian in the eastern Kunlun Mountains have been verified through studies of reef-building communities, palaeoecology and carbonate facies. The eastern Kunlun reefs are built mainly by 6 reef-building communities, which include 11 major categories of frame-building organisms and 6 categories of reef-associated organisms. Eight types of reef-frames have been distinguished and eleven kinds of rocks identified to belong to 6 reef facies. Three sorts of reefs classified by previous researchers, namely mudmounds, knoll reefs and walled reefs, are well developed in the study area. Such reef-facies association and reef distribution show that there are 4 models of reef growth and development, i.e. the tidal-bank knoll-reef model, the plateau-margin wall-reef model, the composite wall-reef model and the deep-water mudmound model. The reefs are mainly constructed by calcareous sponge and calcareous algae, which are similar to all Permian reefs in other area
基金supported by the National Natural Science Foundation of China(NSFC)(No.41703030)Natural Science Foundation of Jiangxi Province(No.20192BAB213024)+1 种基金China Scholarship Council(No.201808360273)the research grant of Shandong Key Laboratory of Depositional Mineralization&Sedimentary Minerals,Shandong University of Science and Technology(No.DMSM20190029)。
文摘The Woniusi flood basalts from the Baoshan terrane,SW China,represent a significant eruption of volcanic rocks which were linked to the Late Paleozoic rifting of the Cimmeria from the northern margin of East Gondwana.However,the precise mechanism for the formation and propagation of the rifting is still in debate.Here we report 40 Ar/39 Ar dating,whole-rock geochemistry,and Sr-Nd-Pb isotopes for the Woniusi basalts from the Baoshan terrane of SW China,with the aim of assessing if a mantle plume was related to the formation of the continent Cimmeria.40 Ar/39 Ar dating of the Woniusi basalts yielded ages of 279.3±1.1 Ma and 273.9±1.5 Ma,indicating they were emplaced during the Early Permian.Whole-rock geochemistry shows that these basalts have subalkaline tholeiitic affinity,low Ti O2(1.2-2.2 wt%),and fractionated chondrite-normalized LREE and nearly flat HREE patterns[(La/Yb)N=2.86-5.77;(Dy/Yb)N=1.21-1.49]with noticeable negative Nb and Ta anomalies on the primitive mantle-normalized trace element diagram.Theε(Nd)(t)values(-4.76 to+0.92)and high(206 Pb/204 Pb)i(18.40-18.66)along with partial melt modeling indicates that the basalts were likely derived from a sub-continental lithospheric mantle(SCLM)source metasomatized by subduction-related processes.On the basis of a similar emplacement age to the Panjal basalts and Qiangtang mafic dykes and flood basalts in the Himalayas,combined with a tectonic reconstruction of Gondwana in the Early Permian,we propose that the large-scale eruption of these basalts and dykes was related to an Early Permian mantle plume that possibly initiated the rifting on the northern margin of East Gondwana.
文摘Abstract: Based on the study of stratigraphy and fossils, the Early Permian ocean in eastern Kunlun is recognized as a kind of reef-island ocean, in which there exist many different kinds of sediment, including patch carbonate platform, reef facies, transitional facies and deep basin sediments. It has been found that the total contents of REEs increase gradually from carbonate platform facies to deep basin facies. Meanwhile, sediments of different facies have different REE distribution patterns and different Ce anomalies. Most of the sediments of patch carbonate platform facies or reef facies are characterized by extremely negative Ce anomalies or moderately negative Ce anomalies (Ce/Ce*=0.33 to 0.55), and medium or thin-bedded limestones of transitional facies by moderately negative Ce anomalies (Ce/Ce*=0.49 to 0.60). However, sediments of deep basin facies show weak or no negative Ce anomalies (Ce/Ce*=0.69 to 1.47), among which the value of Ce/Ce* in the radiolarian chert is 1.47.
基金supported by the Natural Science Foundation of China (41472209 and 40802048)the Chinese Academy of Sciences (Y129012EA2 and 118900EA12)the President Fund for Science and Education Fusion of UCAS (Y552011Y00)
文摘Late Paleozoic igneous rocks are extensively developed in Qiangtang terrene,including west Qiangtang(WQT),east Qiangtang(EQT)and the central Qiangtang(CQT)metamorphic belt.The igneous rocks distributed in WQT
基金supported by the 12th FiveYear Plan Project of State Key Laboratory of Ore Deposit Geochemistry, Chinese Academy of Sciences (SKLODG-ZY125-08)funds from the State Key Laboratory of Palaeobiology and Stratigraphy, Chinese Academy of Sciencesthe National Basic Research Program of China (2007CB411408)
文摘To understand and help settle the controversy around the living time of Pinnatiramosus qianensis Geng, a paleo-weathering profile situated in the town of Yongle near the city of Zunyi, north Guizhou Province, China, was analyzed. The profile formed during a break in sedimentation between the Early Silurian and the Early Permian.Paleosol developed with a depth of several meters. The fossil plant P. qianensis Geng is present, but only in the lower portions(Layer 2) of the paleosol. Another plant with an irregularly branching system is found in Layers 2and 3. The distinct geochemical characteristics of the lower and upper portions of the Gaojiayan paleosol indicate a compound genesis. Its lower portions(Layers 1 and 2)resulted from in situ weathering of silty mudstone of the lower Silurian Hanjiadian Formation. The upper portions(Layer 3) are allochthonous. Transgression brought substantial concentrations K and Na, and led to K- and Naenrichment in the profile. Pumping of vascular plants and downward leaching enhanced the K enrichment in the middle portions. A superior preservation of P. qianensis Geng was observed in an exposure of Layer 2. Mass balance calculation indicates a great K enrichment related to bioaccumulation in the top of Layer 2 and a K loss in Layer3. Fossil plants(e.g., P. qianensis Geng) preserved in the paleosol are Permian rooting systems growing down into the lower Silurian rocks.
文摘This study reports the anatomical structures of a kind of lepidodendralean stem in coal balls from the early Early Permian Taiyuan Formation in Yanzhou Mining District, southwestern Shandong Province, North China. The leaf cushion is slightly rhomboid in outline with a height of 9 - 10 mm and a width of 7.5 9.0 mm and its lower sides are slightly longer than the upper ones. The top and basic angles of the leaf cushion are truncate and the basic angle is slightly elongate. The upper part of the leaf cushion is strongly high-rising. The leaf sear is large and lenticular in shape. The leaf trace is wide and V-shaped in the leaf scar, and horizontally elongate within the leaf cushion. The leaf trace and lateral parichnos strand extend at a nearly horizontal course outward within the leaf cushion. The ligular pit is deep and extends outward at an oblique course and its aperture is located near the top angle of the leaf scar. No infrafoliar parichnos strands are present. The stem is probably siphonostelic and its pith is probably parenchymatous. The primary xylem is exarch with a nearly smooth outer margin. Only the outer cortex is present and it consists of alternately-arranged radial cell bands and gaps within which the are-shaped or V-shaped leaf traces can be seen. The concave side of the leaf trace is toward the center of the stem. No bundle sheath is developed. Periderm is well-developed and consists of phelloderm and phellem in nearly equal thickness. Compared with the lepidodendralean stems of the Cathaysian and Euramerican Floras, the present specimens are most close to an impression-compression species Lepidodendron pulchrum Zhang in morphology of the leaf cushion and they are put into this species temporarily. Whether the present specimens or the type specimens of L. pulchrum are very different from Lepidodendron Sternburg sensu DiMichele, thus the correct nomenclature and classification of L. pulchrum needs to be reconsidered based on the study of better- and anatomically-preserved stems and fertile organs in the future. Because 'L'. pulchrum possesses the mixed features of several genera of Euramerican lepidodendralean stems, it bears significance to study the origin and evolution of the Cathaysian lepidodendralean lycopods.
基金the National Natural Science Foundation of China (Grant No. 40472068, 40672072)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20050616005)
文摘Collected from a Late Permian to Early Triassic sedimentary section in the Zhongliang Mountain of Chongqing, Southwest China, sixty marine carbonate samples were measured for the 87Sr/86Sr ratios, and corresponding evolution curve was constructed. The concentrations of SiO2, CaO, MgO, Mn and Sr are used to evaluate reservation of strontium isotopic composition for original seawater and the credi-bility of the dissolution method for sample preparation. The results show that most of the samples (except seven samples with the Mn/Sr ratios higher than 2) contain the original geochemistry signa-tures of ancient seawater. Compared to the published 87Sr/86Sr ratios from the Late Permian to Early Triassic, our database reported here is the largest and the curve constructed is the most complete. The strontium isotopic curve from Late Permian to Early Triassic is consistent globally and exhibits a gen-eral trend of steady increase during this period. The minimum of 87Sr/86Sr ratios (0.707011) occurs in the Late Permian (30 m in thickness below the Permian-Triassic boundary), and the maximum (0.708281), near the Early-Middle Triassic boundary. The lack of land plants and the rapid continental weathering result in the increase of 87Sr/86Sr ratios during the interval. The Permian-Triassic boundary in Zhongli-ang Mountain Section has been accepted internationally. The 87Sr/86Sr ratios of six samples near the boundary vary from 0.70714 to 0.70715 with an average of 0.70714, which is consistent with the value of 0.70715 (samples are from articulate brachiopod shells) from Korte et al. published in 2006 (within the error range in experiment). Accordingly, the strontium isotope composition in the Permian-Triassic boundary in this paper is of global significance. It can be confirmed that the 87Sr/86Sr ratios of the sea-water in the Permian-Triassic transition are in the range of 0.70714―0.70715.
基金supported by the National Natural Science Foundation of China(Grant Nos.41304049 and 41421002)the Special Fund for Strategic Pilot Technology of the Chinese Academy of Sciences(Grant No. XDB03010000)
文摘Results of a systematic paleomagnetic study are reported based on Late Carboniferous to Early Permian sedimentary rocks on the north slope of the Tanggula Mountains, in the northern Qiangtang terrane (NQT), Tibet, China. Data revealed that magnetic minerals in limestone samples from the Zarigen Formation (CP^z)are primarily composed of magnetite, while those in sandstone samples from the Nuoribagaribao Formation (Pnr) are dominated by hematite alone, or hematite and magnetite in combination. Progressive thermal, or alternating field, demagnetization allowed us to isolate a stable high temperature component (HTC) in 127 specimens from 16 sites which successfully passed the conglomerate test, consistent with primary remnance. The tilt-corrected mean direction for Late Carboniferous to Early Permian rocks in the northern Qiangtang terrane is D°=30.2°, Is=-40.9°, ks=269.0, a95=2.3°, N=16, which yields a corresponding paleomagnetic pole at 25.7°N, 241.5°E (alp/rim=2.8°/1.7°), and a paleolatitude of 23.4°S. Our results, together with previously reported paleomagnetic data, indicate that: (1) the NQT in Tibet, China, was located at a low latitude in the southern hemisphere, and may have belonged to the northern margin of Gondwana during the Late Carboniferous to Early Permian; (2) the Paleo-Tethys Ocean was large during the Late Carboniferous to Early Permian, and (3) the NQT subsequently moved rapidly northwards, perhaps related to the fact that the Paleo-Tethys Ocean was rapidly contracting from the Late Permian to Late Triassic while the Bangong Lake-Nujiang Ocean, the northern branch of the Neo-Tethys Ocean, expanded rapidly during this time.
基金This paper is supported by the National Natural Science Foundation ofChina ( Nos .40232025 ,40572002)the National Science Fund forDistinguished Young Scholars (No .40325004) .
文摘The calimicrobialites of Chongyang (崇阳), Hubei (湖北) Province, occur above the mass extinction line in the Late Permian reef facies. Below the boundary are the sponge reef limestone, crinoid limestone and algae-foraminifer bioclastic limestone of the Changxing (长兴) Formation. The calimicrobialites are generally composed of mid-coarse grains and microlite calcite with a structure of "graniphylc fabric" and stromatolite. The fossils discovered in the calimicrobialites include globular cyanobacteria, ostracods, micro-gastropods, bivalves, fish teeth and some micro-problematical fossils. Conodont fossils of Hindeodus parvus, H. typicalis and H. latidentatus were also found in the calimicrobialites. According to the conodonts, the calimicrobialites spanned the latest Permian and earliest Triassic in the Chongyang Section. The upper part above the first occurrence of Hindeodus parvus should be attributed to the earliest Triassic, and the lower part to the Changhsingian. The sedimentary structure, fossil composition and conodont zonation of the Chongyang calimicrobialites can be well correlated with the calimicrobialites found in other areas of South China.