In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation...In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.展开更多
To study Lie symmetry and the conserved quantity of a generalized Birkhoff system with additional terms, the determining equations of the Lie symmetry of the system is derived. A con- served quantity of Hojman' s typ...To study Lie symmetry and the conserved quantity of a generalized Birkhoff system with additional terms, the determining equations of the Lie symmetry of the system is derived. A con- served quantity of Hojman' s type and a Noether' s conserved quantity are deduced by the Lie symme- try under some conditions. One example is given to illustrate the application of the result.展开更多
In this paper,a nonlinear wave equation with variable coefficients is studied,interestingly,this equation can be used to describe the travelling waves propagating along the circular rod composed of a general compressi...In this paper,a nonlinear wave equation with variable coefficients is studied,interestingly,this equation can be used to describe the travelling waves propagating along the circular rod composed of a general compressible hyperelastic material with variable cross-sections and variable material densities.With the aid of Lou’s direct method1,the nonlinear wave equation with variable coefficients is reduced and two sets of symmetry transformations and exact solutions of the nonlinear wave equation are obtained.The corresponding numerical examples of exact solutions are presented by using different coefficients.Particularly,while the variable coefficients are taken as some special constants,the nonlinear wave equation with variable coefficients reduces to the one with constant coefficients,which can be used to describe the propagation of the travelling waves in general cylindrical rods composed of generally hyperelastic materials.Using the same method to solve the nonlinear wave equation,the validity and rationality of this method are verified.展开更多
In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noet...In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noether'sconserved quantity,the new form conserved quantity,and the Hojman's conserved quantity of system are derived fromthem.Finally,an example is given to illustrate the application of the result.展开更多
In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmeth...In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmethod proposed by Lou [J. Phys. A: Math. Gen. 38 (2005) L129], more general symmetry groups are obtained andthe relationship between the new solution and known solution is set up. At the same time, the Lie symmetry groupsobtained are only special cases of the more general symmetry groups. At last, some exact solutions of GSS equationsare constructed by the relationship obtained in the paper between the new solution and known solution.展开更多
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.
基金Supported by the National Natural Science Foundation of China(10772025)the Key Program of the National Natural Science Foundation of China(10932002)
文摘To study Lie symmetry and the conserved quantity of a generalized Birkhoff system with additional terms, the determining equations of the Lie symmetry of the system is derived. A con- served quantity of Hojman' s type and a Noether' s conserved quantity are deduced by the Lie symme- try under some conditions. One example is given to illustrate the application of the result.
基金This work is supported by the National Natural Science Foundation of China(Nos.11672069,11702059,11232003,11672062)The Ph.D.Programs Foundation of Ministry of Education of China(No.20130041110050)+3 种基金the Research Startup Project Plan for Liaoning Doctors(No.20141119)the Fundamental Research Funds for the Central Universities(20000101)the Natural Science Foundation of Liaoning Province(No.20170540199)111 Project(B08014).
文摘In this paper,a nonlinear wave equation with variable coefficients is studied,interestingly,this equation can be used to describe the travelling waves propagating along the circular rod composed of a general compressible hyperelastic material with variable cross-sections and variable material densities.With the aid of Lou’s direct method1,the nonlinear wave equation with variable coefficients is reduced and two sets of symmetry transformations and exact solutions of the nonlinear wave equation are obtained.The corresponding numerical examples of exact solutions are presented by using different coefficients.Particularly,while the variable coefficients are taken as some special constants,the nonlinear wave equation with variable coefficients reduces to the one with constant coefficients,which can be used to describe the propagation of the travelling waves in general cylindrical rods composed of generally hyperelastic materials.Using the same method to solve the nonlinear wave equation,the validity and rationality of this method are verified.
基金National Natural Science Foundation of China under Grant No.10272034the Doctoral Program Foundation of China
文摘In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noether'sconserved quantity,the new form conserved quantity,and the Hojman's conserved quantity of system are derived fromthem.Finally,an example is given to illustrate the application of the result.
基金Supported by the National Natural Science Foundation of China under Grant No. 10735030Shanghai Leading Academic Discipline Project under Grant No. B412+2 种基金National Natural Science Foundation of China under Grant No. 90718041Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT0734K.C. Wong Magna Fund in Ningbo University
文摘In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmethod proposed by Lou [J. Phys. A: Math. Gen. 38 (2005) L129], more general symmetry groups are obtained andthe relationship between the new solution and known solution is set up. At the same time, the Lie symmetry groupsobtained are only special cases of the more general symmetry groups. At last, some exact solutions of GSS equationsare constructed by the relationship obtained in the paper between the new solution and known solution.