Sea launch has the characteristics of flexible launching points, high landing area safety, and good economy. In recent years, it has become one of the important launch methods. Since 2019, China has carried out a tota...Sea launch has the characteristics of flexible launching points, high landing area safety, and good economy. In recent years, it has become one of the important launch methods. Since 2019, China has carried out a total of 11 successful sea launches. The Gravity-1(YL-1) sea launch system consists of a launch vehicle system and a sea launch platform. The sea launch program includes roll on/roll off boarding, sea mooring, sea maneuvering, anchoring and positioning, system testing, and formal launch. Through the maiden flight of YL-1, the design and manufacturing technology of large tonnage dedicated launch ship, launch vehicle vertical transfer and roll on/roll off boarding technology, anti-shake technology for sea launch, simple inflatable flexible insulation protective cover technology, and remote wireless measurement and control technology have been fully verified.展开更多
A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in th...A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in the breech chamber,and the other is arranged in the barrel.The breech chamber charge was ignited first,and the charges in the auxiliary chambers were ignited by the high-temperature,highpressure combustible gas trailing the projectile.In this way,the combustible gas in the auxiliary chambers could compensate for the pressure drop caused by the movement of the projectile.The proposed device features the advantage of launching a projectile with high muzzle velocity without exceeding the maximum pressure in the chamber.In order to obtain some internal ballistic characteristics of the launch system,some critical structure,such as the length of the filter cartridge auxiliary charge,the combustion degree of the propellant in the chamber,and the length of the barrel,are discussed.The experimental results show that with the increased auxiliary charge length,a pressure plateau or even a secondary peak pressure can be formed,which is less than the peak pressure.The projectile velocity increased by 23.57%,14.64%,and 7.65%when the diaphragm thickness was 0 mm,1 mm,and2 mm,respectively.The muzzle velocity of the projectile can be increased by 13.42%by increasing the length of the barrel.Under the same charge condition,with the increase of barrel length,the energy utilization rate of propellant increases by 28.64%.展开更多
The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational eff...The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.展开更多
How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS consi...How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS considering the credibility of simulation system based on Bayesian theory is proposed in this paper.First of all,a comprehensive index system for the credibility of the simulation system of the firing precision of the MLRS is constructed combined with the group analytic hierarchy process.A modified method for determining the comprehensive weight of the index is established to improve the rationality of the index weight coefficients.The Bayesian posterior estimation formula of firing precision considering prior information is derived in the form of mixed prior distribution,and the rationality of prior information used in estimation model is discussed quantitatively.With the simulation tests,the different evaluation methods are compared to validate the effectiveness of the proposed method.Finally,the experimental results show that the effectiveness of estimation method for firing precision is improved by more than 25%.展开更多
In this paper,a novel launch dynamics measurement system based on the photoelectric sensor pair is built.The actual muzzle time(i.e.a time duration that originates from the initial movement to the rocket’s departure ...In this paper,a novel launch dynamics measurement system based on the photoelectric sensor pair is built.The actual muzzle time(i.e.a time duration that originates from the initial movement to the rocket’s departure from the muzzle)and the muzzle velocity are measured.Compared with the classical methods,the actual muzzle time is obtained by eliminating the ignition delay.The comparative analysis method is proposed with numerical simulations established by the transfer matrix method for multibody systems.The experiment results indicate that the proposed measurement system can effectively measure the actual muzzle time and reduce the error of classical methods,which match well with the simulation results showing the launch dynamics model is reliable and helpful for further analysis and design of the MLRS.展开更多
This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the R...This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.展开更多
Aiming at the shortcomings of the traditional maintenance plan of a launching system, an analysis was made on the development of the reliability centered maintenance methods (RCM) and the basic models for reliabilit...Aiming at the shortcomings of the traditional maintenance plan of a launching system, an analysis was made on the development of the reliability centered maintenance methods (RCM) and the basic models for reliability centered maintenance of a launching system are presented in this paper. The common methods for functional impor- tant product determination, failure modes and effect analysis ( FMEA ) and logic decision analysis were illustrated and the basic methods for maintenance interval calculation models were studied based on availability. According to the research, the reliability centered maintenance plan of a certain launching system was given.展开更多
The research on multiple launch rocket system(MLRS)is now even more demanding in terms of reducing the time for dynamic calculations and improving the firing accuracy,keeping the cost as low as possible.This study emp...The research on multiple launch rocket system(MLRS)is now even more demanding in terms of reducing the time for dynamic calculations and improving the firing accuracy,keeping the cost as low as possible.This study employs multibody system transfer matrix method(MSTMM),to model MLRS.The use of this method provides effective and fast calculations of dynamic characteristics,initial disturbance and firing accuracy.Further,a new method of rapid extrapolation of ballistic trajectory of MLRS is proposed by using the position information of radar tests.That extrapolation point is then simulated and compared with the actual results,which demonstrates a good agreement.The closed?loop fire correction method is used to improve the firing accuracy of MLRS at low cost.展开更多
In this paper, the underwater vehicle, sling and the mother ship are considered as a single degree of freedom system connected by a spring. Through the analysis of this system, a physical model is established, which d...In this paper, the underwater vehicle, sling and the mother ship are considered as a single degree of freedom system connected by a spring. Through the analysis of this system, a physical model is established, which describes the motion of the vehicle caused by the ship motion and wave motion. Furthermore, a mathematical model based on this physical model is obtained, and a numerical solution program is made. As an example, a practical launch and recovery system fbr an underwater robot is calculated by use of the program, and the motion track of the robot is obtained.展开更多
Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling ca...Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling capture mechanism with strong adaptability and high retraction rate has been proposed for the launch and recovery of torpedo-shaped AUVs with different morphological features.Firstly,the principle of capturing motion retraction is described based on the appearance characteristics of torpedo-shaped AUVs,and the configuration synthesis of the capture mechanism is carried out using the method of constrained chain synthesis.Secondly,the screw theory is employed to analyze the degree of freedom(DoF)of the capture mechanism.Then,the 3D model of the capture mechanism is established,and the kinematics and dynamics simulations are carried out.Combined with the capture orientation requirements of the capture mechanism,the statics and vibration characteristics analyses are carried out.Furthermore,considering the capture process and the underwater working environment,the motion characteristics and hydraulics characteristics of the capture mechanism are analyzed.Finally,a principle prototype is developed and the torpedo-shaped AUVs capture experiment is completed.The work provides technical reserves for the research and development of AUV capture special equipment.展开更多
Launch safety of explosive charges has become an urgent problem to be solved by all countries in the world aslaunch situation of ammunition becomes consistentlyworse.However, the existing numericalmodels have differen...Launch safety of explosive charges has become an urgent problem to be solved by all countries in the world aslaunch situation of ammunition becomes consistentlyworse.However, the existing numericalmodels have differentdefects. This paper formulates an efficient computational model of the combustion of an explosive charge affectedby a bottom gap in the launch environment in the context of the material point method. The current temperatureis computed accurately from the heat balance equation, and different physical states of the explosive charges areconsidered through various equations of state. Microcracks in the explosive charges are described with respectto the viscoelastic statistical crackmechanics (Visco–SCRAM) model. Themethod for calculating the temperatureat the bottomof the explosive charge with respect to the bottomgap is described. Based on this combustionmodel,the temperature history of a Composition B (COMB) explosive charge in the presence of a bottom gap is obtainedduring the launch process of a 155-mm artillery. The simulation results show that the bottom gap thickness shouldbe no greater than 0.039 cm to ensure the safety of the COM B explosive charge in the launch environment. Thisconclusion is consistent with previous results and verifies the correctness of the proposed model. Ultimately, thispaper derives amathematical expression for themaximumtemperature of the COMB explosive chargewith respectto the bottomgap thickness (over the range of 0.00–0.039 cm), and establishes a quantitative evaluationmethod forthe launch safety of explosive charges.The research results provide some guidance for the assessment and detectionof explosive charge safety in complex launch environments.展开更多
China launched the 45th satellite in the BeiDou Navigation Satellite System (BDS) as well as the BeiDou 2 GEO-8 satellite into orbit on a LM-3C carrier rocket from the Xichang Satellite Launch Center at 23:48 Beijing ...China launched the 45th satellite in the BeiDou Navigation Satellite System (BDS) as well as the BeiDou 2 GEO-8 satellite into orbit on a LM-3C carrier rocket from the Xichang Satellite Launch Center at 23:48 Beijing time on May 17,2019. The LM-3C carrier rocket was developed by the China Academy of Launch Vehicle Technology (CALT),This was the 101st mission of the LM-3 series launch vehicle,the 200th mission of the LM launch vehicle family that was developed by CALT and the 304th mission of the LM family.展开更多
China launched the 55 th satellite of the Bei Dou Navigation Satellite System(BDS) from the Xichang Satellite Launch Center at 09:43 Beijing time on June 23, marking the completion of the deployment of its own global ...China launched the 55 th satellite of the Bei Dou Navigation Satellite System(BDS) from the Xichang Satellite Launch Center at 09:43 Beijing time on June 23, marking the completion of the deployment of its own global navigation system, which was half year in advance of that planned.展开更多
A LM-3B launched the BeiDou 3 GEO-2 sallite into space at 19:55 Bei-jing time on March 9,2020,from the Xichang Satellite Launch Center.The satellite entered its predetermined orbit later,marking the success of the lau...A LM-3B launched the BeiDou 3 GEO-2 sallite into space at 19:55 Bei-jing time on March 9,2020,from the Xichang Satellite Launch Center.The satellite entered its predetermined orbit later,marking the success of the launch mission.As the 54th satellite in the BeiDou navigation satellite system and also the 29th BeiDou 3 stallite,the BeiDou 3 GEO 2 stlie,developed by the China Academy of Space Technology,is called the“lucky stllite”with the largest size,the longest designed service life and the most funcions.展开更多
The solid rocket motors for the escape system of China’s LM-2 F manned launch vehicle are described,the key technologies and technical innovations utilized are summarized.The technical features and development of for...The solid rocket motors for the escape system of China’s LM-2 F manned launch vehicle are described,the key technologies and technical innovations utilized are summarized.The technical features and development of foreign manned launch abort systems are also presented.The development trends of the solid rocket motor for future Chinese manned launch vehicle escape systems are proposed,which can provide a reference for the future development of manned launch vehicle escape systems.展开更多
On July 18,2024,the Launch of IEA Report World Energy Investment Report 2024 was released at Peking University.This conference was co-hosted by the International Energy Agency(IEA)and the Institute of Energy,Peking Un...On July 18,2024,the Launch of IEA Report World Energy Investment Report 2024 was released at Peking University.This conference was co-hosted by the International Energy Agency(IEA)and the Institute of Energy,Peking University.展开更多
China launched the 11th BeiDou navigation satellite in their BeiDou Navigation Satellite System.The satellite was launched from the Xichang Satellite Launch Center in Sichuan Province on a LM-3C rocket at 0:12 on Febr...China launched the 11th BeiDou navigation satellite in their BeiDou Navigation Satellite System.The satellite was launched from the Xichang Satellite Launch Center in Sichuan Province on a LM-3C rocket at 0:12 on February 25 (Beijing time) and was put into the predetermined transfer orbit successfully.The geostationary satellite is the first BeiDou navigation satellite launched in 2012 for the展开更多
At 19:45 Beijing time on November 5,a LM-3B/Yuanzheng 1 launch vehicle lifted off from the Xichang Satellite Launch Center,putting the first two Bei Dou 3 satellites into orbit after the separation of the rocket upper...At 19:45 Beijing time on November 5,a LM-3B/Yuanzheng 1 launch vehicle lifted off from the Xichang Satellite Launch Center,putting the first two Bei Dou 3 satellites into orbit after the separation of the rocket upper stage and the satellites.The launch opens up a new era for the global networking of the Bei Dou Navigation Satellite system(Bei Dou system),which is the final step of the"three-step development strategy"of the system.展开更多
On December 29,2023,the first launch service tower was completed at the Hainan International Commercial Aerospace Launch Center,marking a key step forward in building the launch capacity of China’s first commercial a...On December 29,2023,the first launch service tower was completed at the Hainan International Commercial Aerospace Launch Center,marking a key step forward in building the launch capacity of China’s first commercial aerospace launch site.On December 10,a Hyperbola-2 methane-liquid oxygen reusable verification rocket was launched successfully,marking the first recovery of reusable carrier rockets in China.展开更多
Gravity-1(YL-1) launch vehicle completed its maiden flight from the Yellow Sea near Haiyang City, Shandong Province, on January 11, 2024, this mission successfully launched three Yunyao satellites into their 500 km or...Gravity-1(YL-1) launch vehicle completed its maiden flight from the Yellow Sea near Haiyang City, Shandong Province, on January 11, 2024, this mission successfully launched three Yunyao satellites into their 500 km orbit. The YL-1 has a performance of 4.2 tons for 500 km sun-synchronous orbit and 6.5 tons for low Earth orbit. The success of YL-1 has further enriched China's launch vehicle spectrum, and will facilitate the launch of medium and large satellites and satellite constellations. In this paper, the flight ballistic solution of YL-1 is introduced. The flight trajectory consists of seven flight segments. The trajectory design comprehensively considered the characteristics and safety requirements of the vehicle to achieve effective utilization of the performance. Through comparative analysis of the flight trajectory and the predicted trajectory, the result confirmed that the flight trajectory was consistent with the design results, the design methodology was correct, and the flight test met the expected requirements. Subsequently, the vehicle will be employed for commercial application launch services.展开更多
文摘Sea launch has the characteristics of flexible launching points, high landing area safety, and good economy. In recent years, it has become one of the important launch methods. Since 2019, China has carried out a total of 11 successful sea launches. The Gravity-1(YL-1) sea launch system consists of a launch vehicle system and a sea launch platform. The sea launch program includes roll on/roll off boarding, sea mooring, sea maneuvering, anchoring and positioning, system testing, and formal launch. Through the maiden flight of YL-1, the design and manufacturing technology of large tonnage dedicated launch ship, launch vehicle vertical transfer and roll on/roll off boarding technology, anti-shake technology for sea launch, simple inflatable flexible insulation protective cover technology, and remote wireless measurement and control technology have been fully verified.
基金financially supported by the National Natural Science Foundation of China under Project No.51874267 and No.12272374the Fundamental Research Funds for the Central Universities under Project Nos.WK2480000008,WK2480000007,and WK2320000049。
文摘A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in the breech chamber,and the other is arranged in the barrel.The breech chamber charge was ignited first,and the charges in the auxiliary chambers were ignited by the high-temperature,highpressure combustible gas trailing the projectile.In this way,the combustible gas in the auxiliary chambers could compensate for the pressure drop caused by the movement of the projectile.The proposed device features the advantage of launching a projectile with high muzzle velocity without exceeding the maximum pressure in the chamber.In order to obtain some internal ballistic characteristics of the launch system,some critical structure,such as the length of the filter cartridge auxiliary charge,the combustion degree of the propellant in the chamber,and the length of the barrel,are discussed.The experimental results show that with the increased auxiliary charge length,a pressure plateau or even a secondary peak pressure can be formed,which is less than the peak pressure.The projectile velocity increased by 23.57%,14.64%,and 7.65%when the diaphragm thickness was 0 mm,1 mm,and2 mm,respectively.The muzzle velocity of the projectile can be increased by 13.42%by increasing the length of the barrel.Under the same charge condition,with the increase of barrel length,the energy utilization rate of propellant increases by 28.64%.
基金supported by the National Natural Science Foundation of China (Grant Number:12372093)。
文摘The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.
基金National Natural Science Foundation of China(Grant Nos.11972193 and 92266201)。
文摘How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS considering the credibility of simulation system based on Bayesian theory is proposed in this paper.First of all,a comprehensive index system for the credibility of the simulation system of the firing precision of the MLRS is constructed combined with the group analytic hierarchy process.A modified method for determining the comprehensive weight of the index is established to improve the rationality of the index weight coefficients.The Bayesian posterior estimation formula of firing precision considering prior information is derived in the form of mixed prior distribution,and the rationality of prior information used in estimation model is discussed quantitatively.With the simulation tests,the different evaluation methods are compared to validate the effectiveness of the proposed method.Finally,the experimental results show that the effectiveness of estimation method for firing precision is improved by more than 25%.
文摘In this paper,a novel launch dynamics measurement system based on the photoelectric sensor pair is built.The actual muzzle time(i.e.a time duration that originates from the initial movement to the rocket’s departure from the muzzle)and the muzzle velocity are measured.Compared with the classical methods,the actual muzzle time is obtained by eliminating the ignition delay.The comparative analysis method is proposed with numerical simulations established by the transfer matrix method for multibody systems.The experiment results indicate that the proposed measurement system can effectively measure the actual muzzle time and reduce the error of classical methods,which match well with the simulation results showing the launch dynamics model is reliable and helpful for further analysis and design of the MLRS.
基金The Natural Science Foundation of China(No.11972193)the Science Challenge Project(No.TZ2016006-0104)。
文摘This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.
文摘Aiming at the shortcomings of the traditional maintenance plan of a launching system, an analysis was made on the development of the reliability centered maintenance methods (RCM) and the basic models for reliability centered maintenance of a launching system are presented in this paper. The common methods for functional impor- tant product determination, failure modes and effect analysis ( FMEA ) and logic decision analysis were illustrated and the basic methods for maintenance interval calculation models were studied based on availability. According to the research, the reliability centered maintenance plan of a certain launching system was given.
基金supported by the Na- tional Natural Science Foundation of China (No. 11472135)the Science Challenge Project (No. JCKY2016212A506- 0104)
文摘The research on multiple launch rocket system(MLRS)is now even more demanding in terms of reducing the time for dynamic calculations and improving the firing accuracy,keeping the cost as low as possible.This study employs multibody system transfer matrix method(MSTMM),to model MLRS.The use of this method provides effective and fast calculations of dynamic characteristics,initial disturbance and firing accuracy.Further,a new method of rapid extrapolation of ballistic trajectory of MLRS is proposed by using the position information of radar tests.That extrapolation point is then simulated and compared with the actual results,which demonstrates a good agreement.The closed?loop fire correction method is used to improve the firing accuracy of MLRS at low cost.
文摘In this paper, the underwater vehicle, sling and the mother ship are considered as a single degree of freedom system connected by a spring. Through the analysis of this system, a physical model is established, which describes the motion of the vehicle caused by the ship motion and wave motion. Furthermore, a mathematical model based on this physical model is obtained, and a numerical solution program is made. As an example, a practical launch and recovery system fbr an underwater robot is calculated by use of the program, and the motion track of the robot is obtained.
基金supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20220649)the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.23KJB460010)+1 种基金the Key R&D Program of Jiangsu Province(Grant No.BE2022062)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_2143).
文摘Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling capture mechanism with strong adaptability and high retraction rate has been proposed for the launch and recovery of torpedo-shaped AUVs with different morphological features.Firstly,the principle of capturing motion retraction is described based on the appearance characteristics of torpedo-shaped AUVs,and the configuration synthesis of the capture mechanism is carried out using the method of constrained chain synthesis.Secondly,the screw theory is employed to analyze the degree of freedom(DoF)of the capture mechanism.Then,the 3D model of the capture mechanism is established,and the kinematics and dynamics simulations are carried out.Combined with the capture orientation requirements of the capture mechanism,the statics and vibration characteristics analyses are carried out.Furthermore,considering the capture process and the underwater working environment,the motion characteristics and hydraulics characteristics of the capture mechanism are analyzed.Finally,a principle prototype is developed and the torpedo-shaped AUVs capture experiment is completed.The work provides technical reserves for the research and development of AUV capture special equipment.
基金the Natural Science Foundation of Heilongjiang Province,China(LH2019A008).
文摘Launch safety of explosive charges has become an urgent problem to be solved by all countries in the world aslaunch situation of ammunition becomes consistentlyworse.However, the existing numericalmodels have differentdefects. This paper formulates an efficient computational model of the combustion of an explosive charge affectedby a bottom gap in the launch environment in the context of the material point method. The current temperatureis computed accurately from the heat balance equation, and different physical states of the explosive charges areconsidered through various equations of state. Microcracks in the explosive charges are described with respectto the viscoelastic statistical crackmechanics (Visco–SCRAM) model. Themethod for calculating the temperatureat the bottomof the explosive charge with respect to the bottomgap is described. Based on this combustionmodel,the temperature history of a Composition B (COMB) explosive charge in the presence of a bottom gap is obtainedduring the launch process of a 155-mm artillery. The simulation results show that the bottom gap thickness shouldbe no greater than 0.039 cm to ensure the safety of the COM B explosive charge in the launch environment. Thisconclusion is consistent with previous results and verifies the correctness of the proposed model. Ultimately, thispaper derives amathematical expression for themaximumtemperature of the COMB explosive chargewith respectto the bottomgap thickness (over the range of 0.00–0.039 cm), and establishes a quantitative evaluationmethod forthe launch safety of explosive charges.The research results provide some guidance for the assessment and detectionof explosive charge safety in complex launch environments.
文摘China launched the 45th satellite in the BeiDou Navigation Satellite System (BDS) as well as the BeiDou 2 GEO-8 satellite into orbit on a LM-3C carrier rocket from the Xichang Satellite Launch Center at 23:48 Beijing time on May 17,2019. The LM-3C carrier rocket was developed by the China Academy of Launch Vehicle Technology (CALT),This was the 101st mission of the LM-3 series launch vehicle,the 200th mission of the LM launch vehicle family that was developed by CALT and the 304th mission of the LM family.
文摘China launched the 55 th satellite of the Bei Dou Navigation Satellite System(BDS) from the Xichang Satellite Launch Center at 09:43 Beijing time on June 23, marking the completion of the deployment of its own global navigation system, which was half year in advance of that planned.
文摘A LM-3B launched the BeiDou 3 GEO-2 sallite into space at 19:55 Bei-jing time on March 9,2020,from the Xichang Satellite Launch Center.The satellite entered its predetermined orbit later,marking the success of the launch mission.As the 54th satellite in the BeiDou navigation satellite system and also the 29th BeiDou 3 stallite,the BeiDou 3 GEO 2 stlie,developed by the China Academy of Space Technology,is called the“lucky stllite”with the largest size,the longest designed service life and the most funcions.
文摘The solid rocket motors for the escape system of China’s LM-2 F manned launch vehicle are described,the key technologies and technical innovations utilized are summarized.The technical features and development of foreign manned launch abort systems are also presented.The development trends of the solid rocket motor for future Chinese manned launch vehicle escape systems are proposed,which can provide a reference for the future development of manned launch vehicle escape systems.
文摘On July 18,2024,the Launch of IEA Report World Energy Investment Report 2024 was released at Peking University.This conference was co-hosted by the International Energy Agency(IEA)and the Institute of Energy,Peking University.
文摘China launched the 11th BeiDou navigation satellite in their BeiDou Navigation Satellite System.The satellite was launched from the Xichang Satellite Launch Center in Sichuan Province on a LM-3C rocket at 0:12 on February 25 (Beijing time) and was put into the predetermined transfer orbit successfully.The geostationary satellite is the first BeiDou navigation satellite launched in 2012 for the
文摘At 19:45 Beijing time on November 5,a LM-3B/Yuanzheng 1 launch vehicle lifted off from the Xichang Satellite Launch Center,putting the first two Bei Dou 3 satellites into orbit after the separation of the rocket upper stage and the satellites.The launch opens up a new era for the global networking of the Bei Dou Navigation Satellite system(Bei Dou system),which is the final step of the"three-step development strategy"of the system.
文摘On December 29,2023,the first launch service tower was completed at the Hainan International Commercial Aerospace Launch Center,marking a key step forward in building the launch capacity of China’s first commercial aerospace launch site.On December 10,a Hyperbola-2 methane-liquid oxygen reusable verification rocket was launched successfully,marking the first recovery of reusable carrier rockets in China.
文摘Gravity-1(YL-1) launch vehicle completed its maiden flight from the Yellow Sea near Haiyang City, Shandong Province, on January 11, 2024, this mission successfully launched three Yunyao satellites into their 500 km orbit. The YL-1 has a performance of 4.2 tons for 500 km sun-synchronous orbit and 6.5 tons for low Earth orbit. The success of YL-1 has further enriched China's launch vehicle spectrum, and will facilitate the launch of medium and large satellites and satellite constellations. In this paper, the flight ballistic solution of YL-1 is introduced. The flight trajectory consists of seven flight segments. The trajectory design comprehensively considered the characteristics and safety requirements of the vehicle to achieve effective utilization of the performance. Through comparative analysis of the flight trajectory and the predicted trajectory, the result confirmed that the flight trajectory was consistent with the design results, the design methodology was correct, and the flight test met the expected requirements. Subsequently, the vehicle will be employed for commercial application launch services.