To solve the sequencing problem in mixed-model flexible assembly lines (MMFALs) with variable launching intervals, a mathematical model aiming to minimize the cost of utility and idle times is developed. To obtain hig...To solve the sequencing problem in mixed-model flexible assembly lines (MMFALs) with variable launching intervals, a mathematical model aiming to minimize the cost of utility and idle times is developed. To obtain high-quality sequences, an advanced scatter search (ASS) algorithm is proposed. A heuristic approach, i.e. launching intervals between products algorithm (LIBPA), is incorporated into the ASS algorithm to solve the launching interval problem for each sequence. Numerical experiments with different scales are conducted to compare the performance of ASS with genetic algorithm (GA). In addition, we compare the cost of variable launching intervals approach with fixed launching intervals approach. The results indicate that the ASS is efficient and effective, and considering variable launching intervals in mixed-model assembly lines (MMALs) sequencing problem can improve the performance of the line.展开更多
基金the National Natural Science Foundation of China(No.71071115)the National High Technology Research and Development Program (863) of China(No.2009AA043000)
文摘To solve the sequencing problem in mixed-model flexible assembly lines (MMFALs) with variable launching intervals, a mathematical model aiming to minimize the cost of utility and idle times is developed. To obtain high-quality sequences, an advanced scatter search (ASS) algorithm is proposed. A heuristic approach, i.e. launching intervals between products algorithm (LIBPA), is incorporated into the ASS algorithm to solve the launching interval problem for each sequence. Numerical experiments with different scales are conducted to compare the performance of ASS with genetic algorithm (GA). In addition, we compare the cost of variable launching intervals approach with fixed launching intervals approach. The results indicate that the ASS is efficient and effective, and considering variable launching intervals in mixed-model assembly lines (MMALs) sequencing problem can improve the performance of the line.