The paper studies a relaxation of the basic multidimensional variational problem, when the class of admissible functions is endowed with the Lipschitz convergence introduced by Morrey. It is shown that in this setup, ...The paper studies a relaxation of the basic multidimensional variational problem, when the class of admissible functions is endowed with the Lipschitz convergence introduced by Morrey. It is shown that in this setup, the integral of a variational problem must satisfy a classical growth condition, unlike the case of uniform convergence. The relaxations constructed here imply the existence of a Lipschitz convergent minimizing sequence. Based on this observation, the paper also shows that the Lavrentiev phenomenon does not occur for a class of nonconvex problems.展开更多
文摘The paper studies a relaxation of the basic multidimensional variational problem, when the class of admissible functions is endowed with the Lipschitz convergence introduced by Morrey. It is shown that in this setup, the integral of a variational problem must satisfy a classical growth condition, unlike the case of uniform convergence. The relaxations constructed here imply the existence of a Lipschitz convergent minimizing sequence. Based on this observation, the paper also shows that the Lavrentiev phenomenon does not occur for a class of nonconvex problems.